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Our insights into the basic characteristics of neuronal function were significantly advanced by combining
the in vitro slice technique with the visualization of neurons and their processes. The visualization through
water immersion objectives requires keeping slices submerged in recording chambers where delivering
artificial cerebro-spinal fluid (aCSF) at flow rates of 2–3 ml/min results in a limited oxygen supply [Hájos N,
harp wave–ripple activity
ABA

nterneuron
ippocampus
eurotransmitter

Ellender TJ, Zemankovics R, Mann EO, Exley R, Cragg SJ, et al. Maintaining network activity in submerged
hippocampal slices: importance of oxygen supply. Eur J Neurosci 2009;29:319–27]. Here we review two
methods aimed at providing sufficient oxygen levels to neurons in submerged slices to enable high energy
consuming processes such as elevated firing rates or network oscillations. The use of these methods may
also influence the outcome of other electrophysiological experiments in submerged slices including the
study of intercellular signaling pathways. In addition, we also emphasize the importance of various aCSF

constituents used in in vitro experiments.

© 2009 Published by Elsevier B.V.

ontents

1. Should the oxygen supply of submerged brain slices be altered? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
2. Improving the oxygen supply of submerged brain slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
3. Network activity in submerged hippocampal slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
4. Single cell synaptic activity in submerged slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
5. Effects of the oxygen supply on intercellular signaling in submerged slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
6. Notes on the composition of the aCSF to better approximate physiological conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
7. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

Ideally, the different aspects of neuronal function should be
nvestigated in the intact brain. However, this aim is difficult to
chieve owing to several technical limitations. To overcome some

These in vitro studies significantly advanced our understanding of
the basic principles of information processing in the central nervous
system (CNS). Naturally, the maintenance of living cells in tissue
Please cite this article in press as: Hájos N, Mody I. Establishing a physi
by increasing oxygen supply and modifying aCSF content. J Neurosci M

f these problems, acute tissue slices prepared from live brain
ere introduced to investigate the intra- and extracellular neu-

onal signaling (Andersen et al., 1977; Schwartzkroin and Andersen,
975; Skrede and Westgaard, 1971; Yamamoto and McIlwain, 1966).
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slices and keeping them in conditions resembling those found in
the intact brain is of paramount importance.

The first chambers developed to study the cellular basis of brain
function using tissue slices were of the interface type (Skrede and
Westgaard, 1971; Yamamoto and McIlwain, 1966). In interface type
chambers (more frequently called the “Oslo” or “Haas” type brain
slice chambers) (Haas et al., 1979; Dingledine, 1984; Reid et al.,
1988; Steriade, 2001), slices are held on a nylon mesh at the inter-
ological environment for visualized in vitro brain slice recordings
ethods (2009), doi:10.1016/j.jneumeth.2009.06.005

face between artificial cerebro-spinal fluid (aCSF) and humidified
gas (the mixture of 95% O2/5% CO2), providing adequate conditions
for the maintenance of functional living cells and their microcircuits
in several hundred-�m-thick brain slices for many hours. In such

dx.doi.org/10.1016/j.jneumeth.2009.06.005
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
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hambers the nutrient supply from the oxygenated aCSF reaches
he slices from the bottom, while a significant portion of the 95%
2/5% CO2 mixture also diffuses though a thin (50–200 �m) layer of
CSF that covers the slices. The flow rate of aCSF is usually kept low,
round 1 ml/min, which means that the full effects of hydropho-
ic drugs will require at least 30 min of perfusion, to allow for the
rug to reach the slice and for its slow diffusion into the tissue (e.g.
homson et al., 2000). This produces a substantial challenge for
he experimenter if a stable control period, a drug effect followed
y a washout need to be obtained. But the major disadvantage of
he interface type slice chamber is the lack of possibility for high-
esolution visualization of the cells and their fine processes.

The technical innovation that combined the electrophysiologi-
al recordings and the visualization of cells in slices came in 1989 in
hin slices with the use of water immersion objectives (Edwards et
l., 1989; Sakmann et al., 1989; Stuart et al., 1993). To visualize the
eurons and their fine processes, brain slices are typically placed on
thin transparent plate made of glass or plastic, and are superfused
ith aCSF, i.e., slices are submerged in the extracellular solution.

n submerged slice chambers, brain slices are supplied with gas
nd nutrients solely through the aCSF using typical flow rates of
–3 ml/min. This relatively higher flow rate and the submerged
ature of the slices allows for the faster exchange of pharmacolog-

cal agents. Although submerged slice chambers vary a great deal
n their shape and the material used for their construction, in every
ype of submerged chamber slices are superfused only at one of
heir surface while resting on the other. Under these conditions,
oncentration gradients for oxygen, nutrients and various chemi-
als contained in the aCSF develop by default in the slices, which can
ramatically affect the experimental results. Not surprisingly, some
esults obtained in slices maintained in interface type chambers
etter resembled findings observed in the intact brain, and could
ot be reproduced in experiments using submerged brain slices.
ost differences were observed in experiments where maintaining

igh levels of neuronal activity was essential (e.g. during network
scillations) (McMahon et al., 1998; Gloveli et al., 2005; Hájos et
l., 2009) and in studies of neuronal oxygen deprivations (Croning
nd Haddad, 1998). These initial observations implied that the oxy-
en supplies to tissues maintained in interface and submerged slice
hambers were considerably different.

. Should the oxygen supply of submerged brain slices be
ltered?

In the intact brain the vascular system delivers oxygen in a
ighly controlled manner wherever and whenever is necessary
Vanzetta and Grinvald, 1999; Vanzetta et al., 2005). In contrast,
n brain slices where the vascular system is not functional, the oxy-
en supply of neurons is limited by the diffusion from the tissue
nvironment (Pomper et al., 2001). Thus, in vivo the oxygen supply
s modified on demand depending on the local neuronal activity,

hereas in vitro the experimenter sets a constant oxygen concen-
ration that is difficult to change. Although the results of some
lectrophysiological investigations obtained in slices are not sig-
ificantly affected by the amount of oxygen supplied (e.g. evoked
otentials; Huchzermeyer et al., 2008), other neuronal functions
ritically depend on high energy consumption, and accordingly on
he amount of oxygen supply. For instance, gamma (30–100 Hz)
scillations, synchronous network activities that emerge from the
hythmic discharges of large neuronal ensembles (Csicsvari et al.,
003; Mann et al., 2005), consume a significant amount of energy
Please cite this article in press as: Hájos N, Mody I. Establishing a physi
by increasing oxygen supply and modifying aCSF content. J Neurosci M

Huchzermeyer et al., 2008). Such oscillations, however, could only
e recorded transiently in submerged slices using flow rates of
–3 ml/min (McMahon et al., 1998; Gloveli et al., 2005; Hájos et al.,
009). These findings imply that the oxygen supply to slices main-
ained in submerged recording conditions is inferior compared to
 PRESS
nce Methods xxx (2009) xxx–xxx

the conditions of interface chambers and those of the intact brain
(Reid et al., 1988). Differences between slices and the intact brain in
oxygen availability during neuronal function have been discussed
in detail in a recent review (Turner et al., 2007).

In this paper we show that not only network oscillations depend
on oxygen concentration supplied to the submerged slices, but
other critical experiments might also be affected by the recoding
conditions. First, we will present some technical solutions to help
increase the oxygen supply of submerged slices.

2. Improving the oxygen supply of submerged brain slices

There are at least two methods to improve the oxygen supply
of slices maintained in a submerged chamber. First, if slices are
being superfused only at one surface, the volume of the submerged
chamber should be reduced as much as possible and the flow rate
of superfused aCSF should be considerably increased. Second, if the
slices can be placed on a mesh with some distance from the support-
ing plate, the aCSF may be superfused individually at both surfaces
of the submerged slices.

We have found that by increasing the flow rate of the aCSF to
3–6 ml/min and reducing the volume of the chamber to 0.5 ml,
network oscillations could be readily maintained in hippocam-
pal slices (Hájos et al., 2004; Mann et al., 2005; Oren et al.,
2006). In preliminary experiments we found that persistent oscilla-
tions in conventional slice chambers designed for visualized patch
clamp recordings with volumes of 1–2 ml could only be achieved
by increasing the flow rate to >10 ml/min. This is reminiscent of
previous observations that persistent network activities in the hip-
pocampal CA3 region (Wu et al., 2005) and spinal cord preparations
(Wilson et al., 2003) could only be maintained when using flow
rates of 15 ml/min and 22 ml/min, respectively. Thus, the flow rate of
the aCSF is a key element in determining the oxygen concentration
delivered to the slices. Consequently, higher flow rates can sustain
the higher oxygen demand required for synchronous discharges of
extensive neuronal ensembles leading to larger oscillatory activi-
ties in field potentials. Our recent measurements fully support this
assumption (Hájos et al., 2009). Clearly, more oxygen can be deliv-
ered by increasing the flow rate, but increasing the rate of slice
perfusion has its own technical limitations (e.g. the shape and the
volume of the slice chamber, the length and the material of tubing
used for perfusion, etc.) (Hájos et al., 2009). The higher perfusion
speed may reduce the available time for the diffusion of oxygen
through the increased surface of the liquid introduced by the water
immersion objective.

A major drawback of a high flow rate however, is the resulting
mechanical instability of the slices, particularly when slice stabil-
ity is critical for lasting electrophysiological recordings and optical
imaging of fine processes. To overcome, or at least to considerably
reduce, the problem of slice instability at high flow rates, a dual-
superfusion slice chamber may be used, where the slices are placed
on a mesh and both surfaces of the slices are individually superfused
with aCSF. In this type of slice chamber the mechanical stability of
the slices is greatly improved, and the one-sided chemical gradients
are significantly reduced, which improves the recording conditions
even at relatively low flow rates of 2–3 ml/min (Fig. 1). For more
technical details see Hájos et al. (2009).

3. Network activity in submerged hippocampal slices

In the intact brain network oscillations, considered to be typical
ological environment for visualized in vitro brain slice recordings
ethods (2009), doi:10.1016/j.jneumeth.2009.06.005

features of neuronal processing, are rhythmic activities generated
by the precisely timed discharge of large neuronal populations
(Buzsáki, 2006). Oscillations with similar characteristics to those
found in vivo can be routinely recorded in brain slices main-
tained in an interface type recording chamber (Whittington et al.,

dx.doi.org/10.1016/j.jneumeth.2009.06.005
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Fig. 1. Dual-superfusion slice chamber. (A), Picture of a chamber insert developed for dual-superfusion. The slices are placed on a mesh glued between two plastic rings of
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thickness of 2 mm. Solution is separately perfused below and above the slice thro
o ensure similar conditions at both slice surfaces. Inset in B represents the schema
CCD camera of the same hippocampal neurons in slices placed on a mesh in a d

ubmerged slice chamber (D). The visibility of neurons and their processes is not co

995; Fisahn et al., 1998; Hájos et al., 2000; Hughes et al., 2004;
orincz et al., 2008; Maier et al., 2003; Pálhalmi et al., 2004). Yet,
etwork activities in submerged slices are extremely difficult to
btain unless the necessary oxygen supply is provided by elevat-
ng the flow rate or by keeping the slices in a dual-superfusion
lice chamber. For instance, sharp wave/ripple oscillations known to
ccur spontaneously in CA3 hippocampal networks in vivo (Buzsáki,
006) and in slices kept in interface type slice chambers (Maier et
l., 2003; Buzsáki, 2006) have been readily recorded under these
odified submerged conditions (Fig. 2A and B) (Spampanato and
ody, 2007; Hájos et al., 2009). In addition, maintaining pharmaco-

ogically induced gamma (30–100 Hz) oscillations in hippocampal
lices for extended periods of time (>30 min) also heavily depend
n the recording conditions. In submerged chambers with low
ow rates, gamma oscillations could be recorded only transiently,
hereas at high flow rates these oscillations were maintained just

ike in recordings in a dual-superfusion slice chamber at lower flow
ates (Fig. 2C and D) (Hájos et al., 2004; Hájos et al., 2009). Since
harmacologically induced gamma oscillations could be induced
nly transiently in submerged slices at low flow rates, yet they were
aintained for long periods of time in submerged slices at high

ow rates (Hájos et al., 2004; Mann et al., 2005; Oren et al., 2006),
n slices kept in interface conditions (Fisahn et al., 1998; Pálhalmi
t al., 2004), and in the intact brain (Sakatani et al., 2008), these
ndings are consistent with the idea that impaired slice oxygen

evels might indeed be a limiting factor for network activities in
ubmerged brain slices at low flow rates.
Please cite this article in press as: Hájos N, Mody I. Establishing a physi
by increasing oxygen supply and modifying aCSF content. J Neurosci M

. Single cell synaptic activity in submerged slices

In addition to synchronous network events the discharge prob-
bility of individual neurons is also affected by oxygen supply in
o inlets (B). The flow rates and temperatures of the two solutions should be equal
wing of the fluid stream in the dual-superfusion slice chamber. Images taken with
perfusion slice chamber (C), or, for comparison, on a glass coverslip in a classical

mised in the dual-superfusion slice chamber.

submerged slices. In the absence of any additional pharmacological
agents in the aCSF, the frequency of spontaneous inhibitory postsy-
naptic currents (sIPSCs) recorded in hippocampal slices submerged
in a chamber with single superfusion, is significantly higher at high
flow rates compared to low flow rates (Fig. 3). There is no difference
in the peak conductance of the sIPSCs between the two conditions
indicating that more oxygen delivered to slices is vital for the spon-
taneous firing of hippocampal interneurons in submerged slices.
Similarly to the enhanced synaptic inhibition, the oxygen supply
can also affect excitatory synaptic transmission. Both the amplitude
and the frequency of spontaneous excitatory synaptic potentials
(sEPSPs) recorded in CA1 hippocampal interneurons have been
found to be significantly larger in slices kept in dual-superfusion
chamber compared to those slices, which were placed in a classi-
cal chamber with single superfusion at flow rate of 2–3 ml/min (G.
Katona, A. Kaszás, G. Turi, B. Rózsa, unpublished observation). The
elevated synaptic activity due to the higher oxygen supply might
be common in all cortical structures. For instance, in neocortical
submerged slices using a flow rate of >8 ml/min, the frequency of
spontaneous synaptic currents (both sEPSCs and sIPSCs) has been
found to be around 40 Hz recorded in pyramidal cells or in interneu-
rons (Spampanato et al., 2008), values that are substantially higher
than those obtained at lower flow rates (∼5–8 Hz, Bandrowski et al.,
2003; Yang et al., 2007). These data collectively indicate that the dis-
charge probability of both inhibitory interneurons and pyramidal
cells in submerged slices can be varied with oxygen levels. Indeed,
it has been observed that more dissolved oxygen in aCSF depolar-
ological environment for visualized in vitro brain slice recordings
ethods (2009), doi:10.1016/j.jneumeth.2009.06.005

ized the membrane potential and caused a parallel increase in the
membrane resistance of CA3 pyramidal neurons (Bingmann et al.,
1984), changes that could contribute to the excitability of neurons.

With the improved spontaneous activity of neurons at rest by
elevated oxygen supply, the modulation of neuronal firing by var-

dx.doi.org/10.1016/j.jneumeth.2009.06.005
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Fig. 2. Network oscillations in the CA3 region of mouse hippocampal slices maintained in a dual-superfusion chamber. (A), Sharp wave/ripple oscillations (sample traces
taken from the indicated time points) could be readily detected under these recording conditions. (B), the stability of sharp wave/ripple oscillations is shown, where the
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requency of their occurrence and their peak amplitudes are plotted as a function of
f slice chamber using carbachol (CCh) at concentrations as low as 1–5 �M. The raw
evelopment and stabilization of cholinergically induced gamma oscillations durin
eak amplitudes of oscillations as a function of time. In both cases, the network os
ow rate was 2–3 ml/min for each channel. Oscillations were recorded with a patch

ous pharmacological agents might also be altered in submerged
hambers when tissue oxygen supply is enhanced. It is well known
hat in hippocampal slices kept in interface type chambers cholin-
rgic receptor activation (e.g. by carbachol) dramatically increases
he spiking activity of inhibitory interneurons. As a consequence,
he GABAA receptor-mediated synaptic events recorded in princi-
al cells are enhanced for periods lasting tens of minutes (Pitler and
lger, 1992). A similar lasting increase in synaptic inhibition cannot
e observed in submerged slices, unless the recoding conditions are
hanged. At low flow rates, bath application of carbachol only tran-
iently increases both the amplitude and the frequency of sIPSCs
ecorded in pyramidal cells of CA3 hippocampal region. In contrast,
he carbachol-induced enhancement of synaptic inhibition persists
uring the whole duration of the perfusion of this cholinergic ago-
ist (Fig. 4) indicating that the high oxygen supply is necessary for
he sustained firing of interneurons induced by carbachol.

. Effects of the oxygen supply on intercellular signaling in
ubmerged slices

As shown above, network oscillations, basal and drug-induced
ring rates are all affected by the oxygen supply to submerged slices.
Please cite this article in press as: Hájos N, Mody I. Establishing a physi
by increasing oxygen supply and modifying aCSF content. J Neurosci M

herefore, it is reasonable to assume that other critical neuronal
vents such retrograde signaling at synapses might also be affected
y the oxygen levels reaching the slices maintained in submerged
onditions. We have recently shown that in the presence of carba-
hol, nitric oxide and endocannabinoids are critically involved in a
(C), Cholinergically induced gamma oscillations could be easily induced in this type
s of oscillations were taken from the indicated time points from the plot in (C). (D),
ash-in of 5 �M CCh (indicated by horizontal bar) in a plot of the frequency and the

ons were recorded in aCSF containing 2 mM Ca2+ and 2 mM Mg2+ at 32–34 ◦C. The
te filled with aCSF, placed in the stratum pyramidale. Data are mean ± SEM.

form of short-term plasticity at hippocampal GABAergic synapses,
the depolarization-induced suppression of inhibition (DSI) (Makara
et al., 2007). After comparing the properties of DSI at different
flow rates in the presence of carbachol, DSI was more consistently
observed in CA1 pyramidal cells at high flow rates (5–6 ml/min;
8/10 DSI) than at low flow rates (2–3 ml/min; 6/19 DSI). Moreover,
the magnitude of DSI was also significantly different (at high flow
rates: 47.1 ± 13.6%, n = 8; at low flow rates: 34.3 ± 6.1%, n = 6; p < 0.05,
Student’s t-test; N. Hájos, unpublished observations). Since the pro-
duction of nitric oxide by nitric oxide synthase is affected by the
oxygen concentration (Nathan and Xie, 1994), at low oxygen lev-
els caused by low flow rates, the synthesis of nitric oxide might be
diminished. Consequently, both the occurrence and the magnitude
of DSI would be limited by the oxygen concentration available to
the neurons.

To this point, we emphasized the necessity of increasing the oxy-
gen supply of neurons in submerged slices that could help studies of
neuronal events under conditions more approaching those in vivo.
However, the possibility of hyper-oxygenation, which could signifi-
cantly affect several parameters of neuronal function and may even
cause acute cell death (Mulkey et al., 2001; Pomper et al., 2001),
should be considered. In the ranges of the flow rates and oxygena-
ological environment for visualized in vitro brain slice recordings
ethods (2009), doi:10.1016/j.jneumeth.2009.06.005

tion used in our experiments, we have not observed any cell death
or neuronal activity that was not also observed in vivo. Neverthe-
less, an optimal range of oxygen supply may need to vary during
various recording conditions, and possible unwanted effects of too
high oxygen concentrations should also be taken into account.

dx.doi.org/10.1016/j.jneumeth.2009.06.005
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Fig. 3. The flow rate determines the spontaneous activity of interneurons as monitored by recording spontaneous inhibitory postsynaptic currents (sIPSCs) in a principal
cell. (A), Raw IPSC recordings in a CA3 pyramidal cell using different flow rates. Hippocampal slices prepared from P16–20 rats were maintained in a classical submerged
type recording chamber with single superfusion. sIPSCs were recorded by the whole-cell patch-clamp technique in the presence of the ionotropic glutamate receptor
blocker kynurenic acid (3 mM) at a holding potential of −65 mV. (B), Plot of the effects of the flow rate on the frequency and the peak amplitudes of IPSCs from the same
experiment. (C), At high flow rates, the frequency of sIPSCs recorded in CA3 pyramidal cells was significantly higher (21.7 ± 2.6 Hz, n = 9) compared to those recorded at low
flow rates (13.5 ± 2.3 Hz, n = 11, p < 0.05, Student’s t-test), whereas the average peak conductances of the sIPSCs were similar (low flow rate: 0.66 ± 0.05 nS, n = 9; high flow
rate: 0.79 ± 0.12 nS, n = 11, p > 0.1, Student’s t-test).

Fig. 4. The duration of the cholinergically enhanced inhibitory transmission critically depends on the flow rate in a single superfusion submerged type chamber. (A),
Recording of IPSCs before and after carbachol application at low and high flow rates. Measurements were done in rat CA3 pyramidal cells as described in the legend of
Fig. 3. (B), Plot of the amplitudes and frequencies of sIPSCs as a function of time at low and high flow rates. The times of the carbachol (CCh) applications are indicated
by horizontal bars. Carbachol induced only a transient increase in sIPSC amplitude and frequency at low flow rates. In contrast, increased synaptic inhibition persisted in
the presence of carbachol at high flow rates. The values calculated from 5 experiments for both conditions were normalized to control conditions (i.e., before carbachol
application).

dx.doi.org/10.1016/j.jneumeth.2009.06.005
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Table 1
Summary of in vitro physiological effects of some CSF components that are not routinely included in aCSF.

CSF components In CSF (�M) Preparation Effects References

GABA 1–5 Hippocampal slices Maintaining tonic currents Glykys and Mody (2006)

Glutamine 400–800 Hypothalamic slice Increased spontaneous firing Nishimura et al. (1995)
Hippocampal slices Necessary for synaptic function in >4 h, but

not in <4 h slices
Kam and Nicoll (2007), An et al. (2008)

Ascorbic acid 500 Forebrain slices Volume regulation Brahma et al. (2000)
Hippocampal slices Free radical scavenger Monje et al. (2000)

Taurine 1–10 Hippocampal slices Volume regulation Kreisman and Olson
(2003)Maintained K+ content

Higher ATP concentrations in slices
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. Notes on the composition of the aCSF to better
pproximate physiological conditions

The ionic composition of aCSF used by different laboratories
s generally similar with small differences in K+, Ca2+ and Mg2+

oncentrations (Reid et al., 1988). These ions are typically added
t higher concentrations to the aCSF than they are found in the
egular CSF (Di Terlizzi and Platt, 2006). There is also a notable
ifference between aCSF and CSF in their glucose concentrations.

n the CSF, glucose reaches concentration between 1.5 and 5 mM
McNay and Sherwin, 2004), whereas its concentration is kept at
0–25 mM in the aCSF. A difference in glucose availability was
hown to affect distinct neuronal functions in slices including net-
ork events (Cunningham et al., 2006). Thus, when comparing

esults from different laboratories it is best to keep in mind that
ven subtle differences in some of the basic components of the aCSF
ight impact the outcome of the experiments (Reid et al., 1988).
What about other key ingredients of the natural CSF which are

outinely excluded from the aCSF? For instance, neurotransmit-
er molecules in concentrations sufficient to act through various
onotropic and/or metabotropic receptors are consistently found
n the normal CSF (Nyitrai et al., 2006). Neurotransmitter concen-
rations found in the normal CSF are sufficient to activate tonic
onductances in distinct types of neurons by activating high affinity
xtrasynaptic receptors (Glykys and Mody, 2007). Such molecules
re not customarily added to the aCSF, although the activated con-
uctances significantly affect neuronal excitability and network
scillations in slice preparations (Glykys et al., 2008). Since the
ABAA receptor-mediated tonic conductance was shown to depend
ven on the storage conditions of the slices (Glykys and Mody,
006), it can be assumed that the amount of GABA in slices will
onsiderably vary depending on the slice preparation and mainte-
ance procedures used in various laboratories. Such discrepancies
ight be ameliorated by adding GABA to the aCSF to yield a final

ree GABA concentration of 200–500 nM, similar to that found in the
ormal CSF (Nyitrai et al., 2006). In addition to GABA, glutamate,
cetylcholine, and many other known neuroactive molecules are
lso present in the normal CSF, some of them such as glutamine in
M concentrations (Lerma et al., 1986). Clearly, the concentrations

f neuroactive compounds are not steady in the CSF, but are contin-
ously changing as a function of brain activity. For instance, there
re dramatic differences in the concentrations of acetylcholine and
erotonin during slow wave sleep compared to that found in the
SF of awake animals (Westerink, 1995). Therefore, an argument
Please cite this article in press as: Hájos N, Mody I. Establishing a physi
by increasing oxygen supply and modifying aCSF content. J Neurosci M

ould be made to use a variety of aCSF with different concentra-
ions of neuroactive compounds to study the equivalent conditions
f various brain states in vitro.

Neuromodulators like taurine, d-serine, ascorbate, etc. con-
ained in the normal CSF could also significantly impact neuronal
ly Fowler (1993), Schurr et al. (1997); but see
Yamane et al. (2000)

release of serotonin from fibers
leaser fenfluramine

Wojtowicz et al. (2009)

signaling if included in the aCSF. Of these compounds, ascorbic
acid, an effective controller of free radical levels in the brain and
a modulator of cellular excitability and synaptic communication
(Rebec and Pierce, 1994), is used more and more often as an additive
(1–3 mM) to the aCSF particularly during slice cutting procedure,
but rarely in the aCSF used for recordings. In the rat brain CSF the
concentration of ascorbic acid is around 0.5 mM, but neurons and
glia can accumulate it by Na+-dependent transporters (SVCT1 and
SVCT2) up to 10 mM and 1 mM, respectively (Rice, 2000). In brain
slices the concentration of ascorbate drops to 20% of control levels
even after a brief incubation time with ascorbate-free media (Rice,
2000), a reduction that might be prevented by adding ∼0.3 mM
ascorbic acid to aCSF. It is reasonable to assume that ascorbic acid
is but one of the compounds washed out from slices maintained
in vitro (see e.g. Kapetanovic et al., 1993), that could significantly
affect the experimental results (Table 1.). Therefore, we strongly
feel that in order for slice preparations to better resemble the
physiological environment of neurons in the intact brain, several
compounds should be included in the aCSF. This approach together
with ensuring a better oxygen supply to the slices should help the
study of the behavior of neurons and their networks as it takes
place in the intact brain.

7. Concluding remarks

In this review we emphasize the necessity of adequate oxy-
gen supply to submerged slices that might impact the outcome
of diverse electrophysiological experiments. Two methods are pro-
vided for improving the oxygen supply to submerged slices without
significant disturbance of the visualization and recording. We also
draw attention to the discrepancy between the components of
normal CSF and those of the aCSF used for preparing and main-
taining brain slices. We propose including some of the normal CSF
constituents in the aCSF and appeal to form a consensus among
interested neuroscientists.
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