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Several recent advances have contributed to our understanding

of the processes associated with mesial temporal lobe epilepsy

in humans and in experimental animal models. Common

pathological features between the human condition and the

animal models may indicate a fundamental involvement of the

given pathology in the process of epileptogenesis.
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Introduction
New insights into the role of mesial temporal lobe
epilepsy (MTLE) in humans and in animal models have
unravelled speci®c changes underlying epileptogenesis
and speci®c events related to seizures. Whereas other or
more general ®elds of basic epilepsy research have been
covered by recent reviews [1,2], the present review will
deal with recent progress in our understanding of the
pathologies involved in MTLE.

As epilepsy is considered to involve hyperexcitable
neurons, a basic assumption in epilepsy research links
the pathogenesis of epilepsy and the generation of
synchronized neuronal activity (seizures) with an imbal-
ance between inhibitory [g-aminobutyric acid (GABA)-
mediated] and excitatory (glutamate-mediated) neuro-
transmission in favor of the latter. MTLE frequently
results from an initial precipitating injury, which predis-
poses individuals to aggravating seizures and hippocam-
pal sclerosis at later stages. Although the speci®c
pathology of the initial precipitating injury is unclear,
the ®nal stages of MTLE can be studied after surgical
resection of the epileptic focus. In laboratory rodents,
status epilepticus (SE)-inducing insults such as contin-
uous perforant path stimulation or the administration of
pilocarpine or kainate have been shown to produce a
condition with spontaneous limbic seizures and hippo-
campal sclerosis that closely mimics clinical ®ndings.
Despite being based on quite a different etiology,
similarities in the pathology between species and
experimental models are likely to result from common
mechanisms underlying the generation of spontaneous
seizures in man and animal models. Cross-correlation
studies of human and animal data over the past decade
have extended our knowledge on the similarities and
discrepancies between basic science and clinical ®nd-
ings, underscoring the predictive value of certain animal
models to further our understanding of human MTLE.

Morphological changes in mesial temporal
lobe epilepsy
Hippocampal sclerosis is speci®c for MTLE in humans
[3], and is characterized by tissue shrinkage, cell loss and
reactive gliosis in all hippocampal sub®elds as well as in
the entorhinal cortex. Neuronal losses involve the hilar
mossy cells, hilar somatostatin-containing interneurons
and CA1 pyramidal cells, whereas hilar and CA1±3
glutamate amino decarboxylase (GAD)-positive inter-
neurons are relatively spared [4,5]. The granule cell layer
is frequently dispersed, presumably because of the
concerted action of brain-derived neutrotrophic factor
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and trkB. Axons of the granule cells, interneurons and
surviving CA1 pyramidal cells sprout and establish
functional aberrant neuronal circuits [4±6]. Animal
models employing SE-inducing insults as the initial
precipitating injury including continuous perforant path
stimulation, kainate or pilocarpine administration to rats,
after 4±6 weeks (the silent or latent period) produce a
condition of recurrent spontaneous seizures and hippo-
campal pathology with a high degree of similarity to that
found in human MTLE. Common traits between rat
models include an approximately 50% loss of hilar
neurons, mostly mossy cells and somatostatin (SS)-
positive interneurons, and a loss of CA1 horizontal SS/
GAD-positive interneurons of the stratum oriens and
alveus [7±10]. Losses of CA1±3 pyramidal cells are
variable, depending on the species, strain and chemo-
convulsant model [8,10,11 .]. Granule cells are well
preserved (in rats) and mossy ®bers sprout into the
supragranular layer and into the CA3 stratum oriens, but
this is not necessarily correlated with seizure severity
[8,12]. GABAergic ®bers also sprout in the dentate and
in the CA1 [13 .], whereas CA1 pyramidal neurons sprout
to form recurrent excitatory feed-forward local circuits
[14 .]. The ®ndings in rat models are at odds with a
recently developed model of MTLE in mice, in which
kainate injection into the CA1 region produces no silent
period, a rapid loss of hilar interneurons, a delayed loss of
CA1 pyramidal cells, and granule cell dispersion [11 .].

The neuronal loss and synaptic restructuring in models
with SE as the initial precipitating injury is much more
extensive than that observed after kindling [15], possibly
because of frequent spontaneous seizures in the former.
However, the variability in the epileptic phenotype
questions the relevance of model-speci®c traits for
epileptogenesis. For example, an extensive loss of CA3
pyramidal cells causing a signi®cant deafferentiation of
the CA1 is invariably seen after kainate, but not
pilocarpine administration in rats. Likewise, the moderate
loss of CA1±3 pyramidal cells in the pilocarpine model can
almost be completely prevented by kindling before
pilocarpine-induced SE, with no impairment in the
development of spontaneous seizures [16 ..]. Together
with the use of fast- or slow-kindling rats [17], these
examples illustrate the importance of using animals with
different pheno- or genotypical backgrounds. Changes
less relevant to epileptogenesis are thus more likely to be
®ltered out by comparing ®ndings between animal
models. This approach is useful for determining whether
certain ®ndings are pivotal for epileptogenesis, or whether
they are merely by-products of epileptogenesis, or
conversely may constitute protective mechanisms against
seizures. The goal of such comparisons should be the
identi®cation and characterization of common pathologi-
cal traits, necessary and suf®cient for epileptogenesis in
animal models and ultimately in patients with MTLE.

The role of hilar neuronal loss and mossy
fiber sprouting
Sprouting is classically seen as a response to the loss of
neuronal targets. Accordingly, the loss of mossy cells and
SS interneurons in the hilus should lead to sprouting in the
inner and outer molecular layers, respectively. It has been
clearly established that mossy ®bers in humans with
MTLE and in animal MTLE models form excitatory
recurrent circuits through collaterals synapsing onto
granule cell and interneuron dendrites in the supragra-
nular layer and onto new subgranular dendrites in the hilus
[8,12,18±20,21 .]. The role of a recurrent granule cell
excitatory feedback in the gating mechanism of the
dentate gyrus will depend on the output function of
dentate granule cells. The main targets of the mossy ®bers
are the two distinct populations of seizure-resistant [8]
hilar cholecystokinin- and parvalbumin-containing basket
cells [22,23.]. The output from the granule cell±mossy
®ber system thus produces a strong activation of GABAer-
gic hilar neurons. Accordingly, activation of the entorhinal
cortical input to the dentate leads to granule cell and
interneuronal population bursts and the depression of
intrahippocampal associational pathways [24]. The few
cases with hilar parvalbumin-positive basket cell losses in
kainate-treated rats have more pronounced sprouting, loss
of granule cell inhibition and more severe epilepsy [8].

Sprouting has been suggested to originate selectively
from newly formed granule cells after seizure-induced
neurogenesis [25]. However, recent experiments have
ruled out this possibility [26 .,27]. It is also becoming
evident that mossy ®ber sprouting is not necessary for
epileptogenesis in animal models. Such sprouting occurs
after non-epileptogenic seizures in the absence of
neuronal loss [28 .], and preventing its expression by
the protein synthesis inhibitor cycloheximide does not
impede epileptogenesis in pilocarpine-treated rats [29].
Mossy ®ber sprouting may thus be a phenomenon
simply associated with seizures, but not absolutely
necessary for epileptogenesis. Other types of abnormal
connectivity are also observed during epileptogenesis,
including CA1 pyramidal cell axonal sprouting [14 .],
GABAergic sprouting in the hilus and in the CA3±1
[4,8], transient spine loss on the proximal dendrites of
dentate granule cells [30], and possibly the formation of
de novo gap junctions in small clusters of neuronal
ensembles [31 ..,32]. The latter ®ndings are of interest
because extracellular recordings have revealed high
frequency (200±500 Hz) synchronization exclusively in
neuronal clusters of the epileptogenic zone [31..].

Interneuron activity in mesial temporal lobe
epilepsy and the dormant basket cell
hypothesis
The dormant basket cell hypothesis [7] seeks to explain
functional consequences of missing excitatory hilar
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mossy cells, thought to deprive interneurons of sig-
ni®cant excitatory afferents, and leading to a disinhibi-
tion of granule cells. Various aspects of the hypothesis
have recently been reviewed [33,34], and here we will
address the hypothesis in relation to the excitatory input
onto interneurons. Approximately 90% of the ipsilateral
synaptic contacts formed by mossy cells are made on the
spines of proximal granule cell dendrites [35]. The loss
of mossy cells may thus deprive basket cells of only a
minor excitatory input. Because interneurons already
receive a vast excitatory input from existing and
presumably sprouted mossy ®bers [22], this loss will
probably not alter afferent excitatory input onto inter-
neurons. Indeed, paired-pulse experiments and patch
clamp recordings show increased or unchanged granule
cell inhibition in humans with MTLE and animal
models after SE or kindling [8,36,37,38.]. Contrary to
the dentate, there is a signi®cant decrease in the
frequencies of miniature inhibitory postsynaptic currents
(IPSC) recorded in CA1 pyramidal cells of epileptic rats
[39 .,40], and a borderline signi®cant reduction in paired
pulse suppression of associational pathways in rat CA1
and the epileptogenic human hippocampus [36,41]. A
group of interneurons in the CA1 oriens and alveus are
clearly lost in epileptic rats [10]. However, the density of
perisomatic GABAergic synapses onto pyramidal cells
[13 .,39.] and monosynaptic inhibition of CA1 pyramidal
cells is similar in epileptic and control rats [41±43],
making it unlikely for CA1 pyramidal cells to become
hyperexcitable due to a reduced inhibitory drive.
Although there is evidence for reduced excitatory post-
synaptic currents (EPSCs) in lacunosum moleculare
interneurons in the kainate model upon afferent
stimulation [43], it is dif®cult to perceive why surviving
GAD-positive interneurons throughout the hippocam-
pus, including the lacunosum±moleculare, should re-
spond with an increased expression of GAD as a result of
dormancy [44]. Increased inhibition in the dentate and
hyperexcitability in the CA1 is not consistent with a
compromised excitatory drive onto interneurons, but
rather with a number of other factors including altered
GABA and glutamate receptor (GluR) composition and
expression, release properties of transmitters and re-
structuring of axonal pathways to establish excitatory
feed-forward connections.

Altered GABAergic transmission
The original hypothesis about the imbalance between
excitation and inhibition in MTLE postulates a
decreased GABAergic function. The latest research
indicates that this is not necessarily the case. For
example, the number of perisomatic GABAergic syn-
apses on CA1 pyramidal cells are unaltered in epileptic
rats [13.,39.]. The observed decrease in IPSC frequency
may thus be caused by altered presynaptic GABA
release. The altered inhibition in MTLE inhibitory

characteristics of the dentate and the CA1 also involve
changes in the molecular assembly of GABAA receptors.
Increases in a1, a2, a3, a4, a5, b2, b3 and g2 GABAA

receptor subunits in dentate granule cells in animal
MTLE models (although changes are model-speci®c, e.g
kainate versus pilocarpine) and human epileptic tissues
[37,45±47] are thought to underlie the increased
frequency and amplitude of miniature IPSC, zinc
sensitivity and the shift in benzodiazepine modulation
[37,48,49]. Granule cells in hippocampi resected from
humans with MTLE also exhibit increased GABA and
zinc potency, but unaltered benzodiazepine ef®cacy [50],
which points to a non-similar GABAA receptor composi-
tion in epileptic humans and rats [46]. Distinct popula-
tions of granule cells from human epileptic hippocampi
express different subunits, shown to underlie differential
sensitivity to clonazepam [51]. Hilar interneurons also
have higher levels of a1, a5, b2, b3 and g2 subunits after
kainate treatment, but the functional implications of this
are unknown. In contrast to the dentate gyrus, CA1
pyramidal cells exhibit decreased ef®cacy, increased
potency of GABA, an unchanged zinc and a decreased
zolpidem sensitivity [49], in line with the compromised
inhibition in this area of epileptic human tissue [36] and
of rat models [41]. The loss of CA1 pyramidal cells
parallels the reduced levels of a5, b3 and possibly g2
subunits, whereas CA1 interneuronal expression of g2
appears to be unaltered [45].

The zinc-loaded mossy ®ber sprouting and the increased
zinc sensitivity of GABA receptors has been suggested to
undermine GABAergic inhibition [48,52]. However, in
the light of the persistence of seizures in the absence of
a zinc delivery system onto the altered GABAA receptors
(i.e. lack of mossy ®ber sprouting [29]), this hypothesis
may need to be revisited.

Even if only region-speci®c, an apparently enhanced
inhibition in MTLE is dif®cult to reconcile with
epileptogenesis. New possibilities for the role of
inhibition and interneurons in epilepsy should be
considered, as GABAergic interneurons can effectively
synchronize neuronal activity [53]. Moreover, granule
cells have been shown transiently (524 h) to express
GAD-67 after SE [54]. The signi®cance of this
phenomenon to epileptogenesis may be strictly related
to SE, but the capacity of granule cells to become
GABAergic represents a possibility for the complete
restructuring of the normal inhibitory network in
response to severe neuronal stimuli. In line with the
paradoxical increase of GABA-mediated transmission in
MTLE, it is interesting to note that hyperthermia-
induced seizures in immature rats (a model of febrile
seizures in man) result in a life-long increase in the
function of hippocampal GABA synapses [55 ..], whereas
the animals become more prone to epileptogenesis [56 .].
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Glutamatergic and other excitatory
mechanisms in epileptogenesis
Ionotropic GluR are divided into three classes: a-amino-
3-hydroxy-5-methyl-isoxazole propionate (AMPA), N-
methyl-D-aspartate (NMDA) and kainate receptors
named after preferred agonists and based on molecular
sequence homologies. Metabotropic GluR are classi®ed
into three groups (I±III) on the basis of second
messenger pathways and pharmacology. The blockade
of GABAergic neurotransmission usually uncovers an
increased excitatory drive in the hippocampi of epileptic
animals and humans [19,20,21.,57]. However, because
increased excitatory activity, at least in the dentate,
appears to be adequately counterbalanced by inhibition,
it is still not clear how the increased gain of excitatory
drive dictates neuronal population bursting and epileptic
seizures through the hippocampus.

Glutamate release and hence glutamate receptor activa-
tion is increased during kindling epileptogenesis and
during and after SE. The effect of chronically elevated
glutamate levels caused by a lack of glutamate transpor-
ter subtypes GLT-1 and GLAST render mice more
seizure-susceptible [58,59], but this particular mechan-
ism may be less relevant in the kindling model of
epilepsy [60,61]. The correlate of this situation in
epileptic tissue is most likely caused by an altered
release probability, as has been demonstrated at the
mossy ®ber±CA3 pyramidal cell synapse, and shown to
involve a signi®cantly increased pool of releasable
glutamate [62]. The increased NMDA receptor activa-
tion in MTLE [63.] is also signi®cant, given the pivotal
role of this receptor in plasticity and long-term gene
regulation through the persistent (1 year after SE)
activation of transcription factor AP-1 [64]. The NMDA
receptor antagonist MK-801 has antiepileptogenic effects
during kindling, and blocks the expression of sponta-
neous seizures after SE [65,66], but has no effect against
acute kindled or clinically refractory seizures. This
suggests that NMDA receptor activation in epilepsy
may initiate a cascade of cellular events that later loses its
dependency on NMDA receptors. Whereas the effects of
MK-801 originally made NMDA receptors unsuitable as
therapeutic targets for MTLE therapy, recent progress
with low-af®nity ligands [67] or the anticonvulsant effects
of vaccine-induced inhibition of the NMDA receptor-
subunit NR1 [68..] may change this view. Levels of
NMDA receptors appear to be increased in epileptic
tissue [69±72], but the gain of NMDA receptor-mediated
transmission in MTLE is also effectively enhanced by
post-translational modi®cations of NMDA receptor sub-
units such as phosphorylation [73,74] and redox modula-
tion [75]. Genetically modi®ed mice expressing a Q/R
unedited GluR-B subunit to enhance glutamate-induced
calcium in¯ux through AMPA receptors suffer from
temporal lobe epilepsy [76,77] similar to mice lacking the

presynaptic vesicle, SV2A and SV2B [78]. This is in line
with an increased calcium in¯ux in epileptic neurons
[79±81], leading to the activation of downstream cellular
processes responsible for axonal outgrowth and synapto-
genesis. Some of the calcium-dependent effects may be
counteracted by direct or indirect pharmacological
modulation of calcium channels [82±84]. However, the
Ca2+-related changes in epileptic tissue are non-equivo-
cal. Some neurons such as the dentate gyrus granule cells
may have developed a defence mechanism against
excessive Ca2+ entry. In human MTLE and in several
animal models, the loss of calbindin from these cells
results in a decreased Ca2+ entry during repetitive ®ring
[85]. Similarly, selective increase of metabotropic GluR4
in granule cells of patients with MTLE [86 .] may serve a
protective purpose.

Conclusion
The development of new animal models and extensive
comparative anatomical and physiological studies with
tissue obtained from MTLE patients have pointed out a
number of common pathophysiological conditions. Such
studies have enabled us to revisit the dormant basket
cell hypothesis, and have cast doubt about the necessity
of mossy ®ber sprouting and certain neuronal losses for
epileptogenesis. Future research efforts will have to
focus on key factors of epileptogenesis to separate
epileptogenetic events from by-products of epileptic
seizures or from possible endogenous protective neuro-
nal mechanisms activated to defend against the deleter-
ious effects of epileptic discharges. In this quest it will
be extremely important to determine the precise timing
of the critical neuronal alterations. We have to keep in
mind that the sight of an open airbag in a car accident
may seem to the uninitiated to be the cause of the crash
rather than a device designed to protect against it.
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