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Abstract—Wireless-enabled processor modules intended for
communicating low-frequency phenomena (i.e., temperature, hu-
midity, and ambient light) have been enabled to acquire and trans-
mit multiple biological signals in real time, which has been achieved
by using computationally efficient data acquisition, filtering, and
compression algorithms, and interfacing the modules with bio-
logical interface hardware. The sensor modules can acquire and
transmit raw biological signals at a rate of 32 kb/s, which is near the
hardware limit of the modules. Furthermore, onboard signal pro-
cessing enables one channel, sampled at a rate of 4000 samples/s
at 12-bit resolution, to be compressed via adaptive differential-
pulse-code modulation (ADPCM) and transmitted in real time.
In addition, the sensors can be configured to filter and transmit
individual time-referenced “spike” waveforms, or to transmit the
spike height and width for alleviating network traffic and increas-
ing battery life. The system is capable of acquiring eight channels
of analog signals as well as data via an asynchronous serial connec-
tion. A back-end server archives the biological data received via
networked gateway sensors, and hosts them to a client application
that enables users to browse recorded data. The system also ac-
quires, filters, and transmits oxygen saturation and pulse rate via a
commercial-off-the-shelf interface board. The system architecture
can be configured for performing real-time nonobtrusive biological
monitoring of humans or rodents. This paper demonstrates that
low-power, computational, and bandwidth-constrained wireless-
enabled platforms can indeed be leveraged for wireless biosignal
monitoring.

Index Terms—Brain–Machine interface, mote, neural record-
ing, smart dust, spike compression, spike filtering, stimulation,
telemetry, TinyOS, wireless.

I. INTRODUCTION

AMAJOR challenge to realize a remote biological-
monitoring system is the creation of miniature wireless

biological sensors that serve as the interface between the patient
and the network infrastructure. These wireless biological sen-
sors must be capable of sensing, amplifying, and transmitting
biological signals that range from the order of tens of microvolts
to several milivolts, while being nonobtrusive (i.e., compact) and
consuming low power (i.e., sufficient battery life). The vast ma-
jority of the power used by the wireless sensor is dedicated to
the radio transmitter for signal transmission. Therefore, the addi-
tion of local data-processing capabilities can prolong battery life
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significantly, due to the elimination of the requirement for con-
stant high-throughput wireless data transmission. In addition,
the combination of onboard signal-processing capabilities and a
receiver can enable user-defined multimode operation, such as
allowing the observer to switch between low-power event detec-
tion and variable rates of real-time biological-signal transmis-
sion. Therefore, a system that combines bidirectional communi-
cations with onboard computational abilities would be superior
to a simple transmitter/receiver unit. Possible approaches for
implementing a wireless biological sensor range from assem-
bling commercial-off-the-shelf PC (COTS-PC) components [1]
to custom-fabricating integrated circuits (ICs) [2]. COTS-PC
components yield large power-intensive units with powerful
communications and signal-processing capabilities, while cus-
tom ICs yield very specialized, compact, and power-efficient
solutions. Unfortunately, investing in the development of cus-
tom ICs for digital signal acquisition, processing, and communi-
cation for nonstandardized applications (e.g., biological-signal
recording), unlike cellular phones that operate on strict interna-
tional standards (e.g., GSM, Bluetooth, etc.) may not be eco-
nomically feasible. The overlay of a biological-recording system
upon an embedded wireless sensing and communications plat-
form has been reported in [3]. This wireless communications
platform uses ultraminiature computers as sensor nodes (some-
times referred to as “motes”), which are capable of digital-signal
processing and two-way wireless communication. The signifi-
cance of this paper is that it is a novel attempt to enable a mote to
communicate neural signals in real time, which is an application
that requires the mote to operate at or near the hardware limit,
as opposed to other approaches that use hardware with high
degree of communications and digital-signal-processing capa-
bilities that are not fully utilized, at the expense of unnecessary
power consumption. The motes operate on a component-based
operating system called TinyOS [4]. The TinyOS-based motes
(i.e., MICA2) have been used as a foundation for an electroen-
cephalograms (EEG) recording system that is capable of trans-
mitting up to six channels of EEG at an aggregate rate of up to
2400 8-bit samples/s (1200 8-bit samples/s for the MICA2DOT)
among all channels. The system was later enhanced by using a
later generation of motes (the MICAz) and TinyOS build and is
capable of capturing and transmitting neural signals at a rate of
45 kb/s for a single channel of spike recording at approximately
5600 samples/s or eight channels of EEG [4]. Unfortunately, the
high power consumption required to continuously sample and
transmit data-limited battery life to approximately 5 h [5] . This
paper leverages the direct memory access (DMA) capability of-
fered in the more modern TelosB mote platform to expand on
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Fig. 1. Bi-Fi Mote, including the Smiths Medical PM.3044 finger oximeter,
Erlich Senser SS TM10 thermistor, and Discount Disposables TD429 EKG
leads.

the previous work reported in [3] and [5] by: 1) adding signal-
processing capabilities to lower bandwidth, hence, increasing
battery life and 2) pulse oximetry and temperature sensing. The
wireless sensor (depicted in Fig. 1) combines a TelosB mote
with biological interface circuitry and probes, thus, yielding a
matchbox-sized form factor.

Biological signals of interest include temperature, local-
field potentials (LFP), and electrocardiograms (EKG). In addi-
tion, spike identification is required for many brain–computer-
interface (BCI) applications [6]. Furthermore, the system must
be capable of bidirectional communications to enable remote
configuration of the sensor (e.g., adjustable gain and recording
bandwidth) that is embedded on the patient or test subject. Re-
mote system configurability enables the investigator to achieve
a compromise between the granularity of the received informa-
tion and battery life, as the radio is the largest power-consuming
component of the device. For example, transmitting a patient’s
vital signs (EKG, pulse oximetry, and temperature) in real time
results in a battery life of 100 h from a pair of AA alkaline
batteries. The telehealthcare provider could choose to have the
sensor evaluate vital-sign data locally to arrive at a modified
early warning score (MEWS) [7], which is transmitted period-
ically (e.g., hourly, weekly, monthly, etc.), or only in the event
that there is a change in calculated score, which requires the
system to be recharged approximately once every ten weeks
(as microcontroller power dissipation dominates in this mode of
operation). Brain–computer-interface developers desire a record
of the time at which neural spikes occur and an identification of
the cells from which they originate, which enables dual-channel
recording and results in a battery life of approximately three
days from a single 3-V coin cell [5]. Neuroscientists may not
desire any sort of filtering to be performed whatsoever in order
to have a record of the actual electrophysiological signal, requir-
ing a constant data sampling and transmission rate of 32 kb/s for
a single channel, which results in a battery life of approximately
5 h from a coin cell [5].

II. DEFINITION OF A NEW APPROACH

A. Existing Miniature-Scale Wireless Biosignal-Monitoring
Systems

A thorough review of existing approaches toward developing
wireless biological sensors has been covered in [5]. These ap-
proaches can be divided into two major categories: fully analog
and microcontroller-based. Fully analog systems are either: 1)
fully integrated amplifiers and transceivers or 2) assembled mul-
tichip modules. Although the fully integrated devices demon-
strated in [2], [8]–[10], and feature very small size (5–100 mm)
and low power consumption (approximately 2–14 mWs), they
do not provide digital-signal filtering or bidirectional communi-
cations (except for the system described in [10], which can mod-
ulate the inductive power link as a carrier signal for communica-
tion from the base station to the sensor). In addition, large rein-
tegration efforts could be required for even minor upgrades and
improvements (e.g., channel count, signal bandwidth, etc.). The
assembled multichip modules, which are composed of COTS
ICs for the amplifier and the transmitter (i.e., [11]–[13]), have
performance characteristics similar to those that use custom ICs,
but have a much shorter development time, greater size, more
mass, and increased power consumption. In order to compare
the performance and capabilities of the fully analog systems,
it would be useful to define a figure of merit as the analog-
telemetry-efficiency factor (ATEF)

ATEF =
BW d

mP
(1)

where BW is the aggregate communications bandwidth (ex-
pressed in kilohertz), d is the maximum telemetry distance
(expressed in meters), m is the mass of the sensor (expressed
in grams), and P is the average power dissipation (expressed
in miliwatts). Table I presents several recently reported fully
analog biological sensors and compares them on the basis
of the ATEF figure of merit. Although a microcontroller-
based system with ample signal-processing and bidirectional-
communications abilities has been demonstrated [14], its size,
weight, and power consumption is significantly greater than
the aforementioned integrated systems. Other microcontroller-
based systems have been introduced [15]–[17]; however, their
data throughput and processing performance were not near
the potential limits of their underlying hardware (i.e., they
do not perform digital-signal filtering). The underutilization
of such powerful hardware leads to unnecessarily high power
consumption, which will be outlined in Sections VI and VII.
In order to compare the performance and capabilities of the
microcontroller-based systems, it would be useful to define a
figure of merit as the digital-telemetry-efficiency factor (DTEF)

DTEF =
BReff d

mP
(2)

where BReff is the effective bitrate (expressed in bits per sec-
ond) that takes into account any form of compression (e.g., a
compression efficiency of 2 will double the effective bitrate), d
is the maximum telemetry distance (expressed in meters), m is
the mass of the sensor (expressed in grams), and P is the average



FARSHCHI et al.: BI-FI: AN EMBEDDED SENSOR/SYSTEM ARCHITECTURE FOR REMOTE BIOLOGICAL MONITORING 613

TABLE I
COMPARISON WITH FULLY ANALOG SYSEMS

TABLE II
COMPARISON WITH MICROPROCESSOR-BASED SYSTEMS

power dissipation of the sensor (expressed in miliwatts). Table II
presents several recently reported microcontroller-based biolog-
ical sensors and compares them on the basis of the DTEF figure
of merit.

B. TinyOS and the Mica-Based Sensor Network

The type of mote used in this paper is the TelosB mote pro-
duced by Crossbow Technology, Inc. (San Jose, CA, USA) and
Moteiv (El Cerrito, CA, USA). Data is processed by a mi-
crocontroller (MSP430, Texas Instruments, Dallas, TX, USA)
with 10 kB of RAM. The TI MSP430 has eight analog in-
put channels that are time-multiplexed onto a single analog-
to-digital converter (ADC). Data transmission is handled by a
ZigBee-compliant (IEEE 802.15.4) 2.4-GHz transceiver (Chip-
con CC2420, Oslo, Norway). An antenna embedded on the
printed-circuit board is used for wireless communication. When
two 1.5-V batteries (Panasonic Industrial AA, Secaucus, NJ,
USA) are installed, the TelosB mote becomes approximately
the size of a matchbox (65 mm × 31 mm ×21 mm). Users have
the option of using more compact 3-V batteries that may be more
suitable for their application (e.g., coin cells for experiments in-
volving rodents). One TelosB mote, running a signal acquisition,
filtering, and transmission framework [18], has been interfaced
with the test subject via a biological interface (depicted in Fig. 1).
A second TelosB mote interfaced with a gateway module, which
in this experiment is a laptop (Thinkpad X21, IBM, Armonk,
NY, USA) running a modified version of Emstar [19] to emulate
a Stargate Gateway (Crossbow Technology, Inc.), wirelessly re-

ceives and forwards sensor readings over the network (Ethernet).
The gateway module also provides sensors with configuration
data for remote adjustment of filter properties. This paper has
been directed toward investigating software filters, biological
interfaces, and a back-end server architecture to enable chronic,
multichannel, and wireless biosignal recording.

III. SYSTEM DESIGN

A. Hardware

Two types of biological interface circuits are used in this
paper. For capturing raw EEG, an instrumentation amplifier
(AD627, Analog Devices Norwood, MA, USA) is used. The
AD627 is preceded by a high-pass filter with its f-3dB point
set to 1 Hz, followed by a low-pass filter with its f-3dB point
set to 200 Hz. The gain of the AD627 is set by an external
resistor to 200. This circuit has been described in greater detail
in [5]. A three-lead EKG circuit has been implemented with
an instrumentation amplifier (INA321, Texas Instruments) and
a quad op-amp (OPA4336, Texas Instruments). The details of
this circuit layout can be found in the INA321 datasheet. The
outputs of these circuits are interfaced directly with the ADC
inputs of the TelosB mote. For capturing oxygen saturation and
pulse rate, an oximeter (Smiths Medical PM 31392B1, Wauke-
sha, WI, USA) is interfaced with the serial input on the TelosB
(UART0) in a manner similar to [20], albeit with a TelosB
rather than a MICAz mote. Temperature sensing is performed
with the temperature sensor thermistor (Senser SS TM10, Erlich
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Fig. 2. Neural-spike parameters of interest (adapted from [21]).

Industrial Development Corporation, Charlotte, NC, USA) as
part of a resistor bridge circuit followed by an INA321 instru-
mentation amplifier. Although the present form factor of the
temperature probe is not suitable for biological temperature
sensing, a thermistor with a more suitable form factor could be
used in its place and would only require different resistor values
in the resistive bridge sensing circuit.

B. Software

To best leverage the limited processing capabilities of the
TelosB for the purpose of improving battery life, computation-
ally efficient filters were designed for acquiring neural spikes
to minimize the amount of raw data being transmitted from
the radio while still providing useful biological information.
These filters were incorporated as part of a modular framework
for signal acquisition, filtering, and transmission. The frame-
work operates at the hardware level, thus minimizing overhead
and achieving the maximum performance that can be provided
by the direct memory access (DMA)-enabled microcontroller
and radio. Details regarding this framework are beyond the
scope of this paper, and can be found in [18]. An excellent
example of where sensor-level signal processing can yield high
bandwidth and, hence, power savings is detecting and classify-
ing single-neuron firings when investigating single-unit activ-
ity. Raw neural recording and transmission normally requires
a bandwidth in excess of 40 kb/s per channel [21]. Numerous
methods have been investigated for detecting a neural spike (or
discharge of a single neuron) to ease network traffic and band-
width requirements. The memory and computational resources
required by each spike-detection algorithm vary from requir-
ing powerful desktop PCs [22] to simple analog circuits [23].
Obeid and Wolf [14] have performed an evaluation of neural-
spike-detection algorithms, and concluded that for systems with
limited computational resources, taking the absolute value of the
neural signal before applying a threshold (in combination with a
refractory period) is just as effective as applying more elaborate
energy-based detectors. In addition, basic spike sorting can be
achieved by measuring the width and height of each individual
spike waveform [21]. The spike features that neuroscientists use
to categorize the spikes are illustrated in Fig. 2.

For detecting the spikes, an adaptive spike-detection algo-
rithm is used to detect neural spikes in the presence of varying
background noise [24]. This approach avoids the occurrence of
false positives due to occasional increases in background noise
power. If the baseline level of the high-pass filtered neural signal
is regarded as band-limited white Gaussian noises, then the prob-
ability of exceeding a threshold set at one standard deviation,
or root mean square (rms) of the baseline is 15.9%. Setting the
threshold at three standard deviations of the baseline noise level
results in spikes being detected reliably without false positives,
as Gaussian noise rarely exceeds three times its rms value. The
lowest multiple of standard deviations of the baseline at which
the threshold can be set depends on the signal-to-noise ratio
(SNR) of the spike waveform. An in-depth analysis of spike-
detection effectiveness as a function of threshold and SNR for
absolute-threshold-based spike-detection algorithms has been
presented in [14].

The algorithm continuously buffers the signal until its abso-
lute value exceeds a user-defined number of standard deviations
of the baseline noise, which is calculated via a sliding-window
algorithm or a user-defined threshold. To avoid interference
(such as movement artifacts) from being classified as neural
spikes, the height, width, and trough depths of the detected
spike (see Fig. 2) are also measured against a range of accept-
able values predetermined by the user. If the measured spike
parameters fit within these ranges, the spike is accepted by the
filter. The data points representing the spike are compressed via
adaptive differential-pulse-code modulation (ADPCM) [25] and
marked for transmission over the radio. This filtering method
provides users with a time-reference record of the individual
spike waveforms. A second filter passes the height and width
of each spike along with its time of occurrence, which enables
the client to statistically categorize the spikes based on their
features [21].

EKG-feature extraction has been recently attempted on em-
bedded sensors for sensor-level analysis [26], using a modified
version of the real-time QRS-detection algorithm [27] in sim-
ulation. Implementing feature-detection algorithms as well as
a classifier [28] would enable the TelosB mote to detect var-
ious types of arrhythmia. This capability would eliminate the
need for sending the real-time EKG signal, and only require
the sensor to transmit information regarding an arrhythmia if
one should be detected. However, in the present system, the raw
waveform is simply compressed by ADPCM and transmitted
over the radio. EKG feature extraction and classification will
be investigated in future work. Local-field potentials are rhyth-
mically varying electrical impulses of large neural populations
that vary at rates below 100 Hz [29]. Local-field potential en-
ergy has been correlated to specific arm movement and reach
parameters such as direction, distance, and speed [30]. The en-
ergy of the signal is derived by obtaining its rms value over
a user-programmable window. For calculating the square root
in a computationally efficient manner, a lookup-table-based al-
gorithm has been employed that only uses bit-shifting for the
square-root computation. The 31392B1 pulse oximeter trans-
mits 60 4-byte packets/s via its serial connection. The packets
contain pulse rate and blood oxygen saturation, both digitized
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Fig. 3. Bi-Fi system architecture.

by default at 8-bit resolution. A TinyOS software component has
been written to interface the TelosB mote to the 31392B1. A soft-
ware filter averages oxygen saturation and pulse-rate readings,
and transmits them in the form of 2 bytes over a user-defined
period of time. Oxygen saturation and pulse-rate readings can
be transmitted only when they differ by a relative percentage,
which is programmable by the user. The Chipcon CC2420 radio
on the TelosB uses the TI MSP430-UART0 bus for configura-
tion, which prevents the UART0 from being used by a peripheral
device (such as the 31392B1). A bus arbitrator has been imple-
mented under TinyOS that allows the bus to be used by the
31392B1 when the TelosB is prepared to acquire data from it.
The arbitrator then returns the bus to the radio when the data re-
quired from the 31392B1 has been received. Data transmission
takes place in packet format. The type of signal (e.g., pulse-
rate, oxygen saturation, neural signal, or temperature), signal
resolution, filter type, and a time reference are included in the
packet header. An overall system-level diagram is depicted in
Fig. 3, which illustrates the flow of data through the system.
The transmitted data is received by a second TelosB mote that is
interfaced with the Emstar-enabled laptop. The gateway module
parses the data from the received packets, and encapsulates them
as structured query language (SQL) queries for posting to the
archive server. The SQL queries are transmitted via TCP/IP to
the archive server. The archive server is a Linux-based sys-
tem running a database server (MySQL, MySQL AB, Uppsala,
Sweden). A Java-enabled client application for use on a desktop
PC has been designed to browse the biological data from the
archive server over a network connection. The client applica-
tion reconstructs raw waveforms by applying an eighth-order
Chebyshev filter to an up-sampled version (by a factor of 10) of
the original archived waveform.

IV. SYSTEM TESTING

For neural recording, the Bi-Fi system can be interfaced
directly with a rodent via an implanted depth electrode as
illustrated in [3] and [5], which demonstrate real-time wireless
neural-signal recording with the TinyOS-based embedded
sensors. For testing the spike-filtering characteristics of the
system, an arbitrary-waveform generator (33120A, Agilent
Technologies, Inc., Palo Alto, CA, USA) was programmed with
prerecorded spike datasets. The data was originally acquired in
vivo from freely moving rats using five four-channel MOSFET-
input operational amplifiers mounted in the cable connector
to remove movement artifacts. Data were recorded wideband
(0.1 Hz–5 kHz) and sampled at 10 kHz/channel (16 channels)
with 12-bit precision. Spikes were obtained by applying a high-
pass filter with a f-3-dB frequency of 300 Hz. The signal genera-
tor was programmed to output the 1-s 10 000-point dataset with
12-bit precision (over a 50-mV peak-to-peak dynamic range,
resulting in an accuracy of approximately 12 V, with each point
connected by a straight line segment) at a rate of 1 Hz. Since the
precision and data rate of the waveform generator is identical
to those of the sampled signal, no signal information was lost.
The ability of the system to measure pulse rate and oxygen
saturation was tested by attaching the finger oximeter (Smiths
Medical PM 3044) to the index finger of a human test subject.

V. RESULTS

A. Neural Recording

Fig. 4(a) displays the original dataset acquired from an oscil-
loscope, which was attached to the output of the signal generator
programmed to output the spike waveforms. Fig. 4(b) displays
the dataset that was acquired and transmitted by the TelosB
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Fig. 4. Neural signal (a) applied to the mote, (b) ADPCM-compressed, (c) filtered waveforms, (d) spike parameters, and the bandwidth required for transmitting
them. To demonstrate the ability of the filter to accept spikes while rejecting unwanted noise (such as motion artifacts, which result in spike-like patterns in the
input signal), the filter parameters (i.e., window of acceptable spike heights, widths, and trough depths, which are user programmable) were programmed to reject
the sixth-spike waveform in the dataset—as though it were noise—as it has a very low trough depth.

mote at 4000 12-bit samples/s followed by ADPCM compres-
sion. Fig. 4(c) displays the transmitted signal when the mote
was programmed to acquire the neural signal at 8000 12-bit
samples, and then to detect and transmit time-referenced spikes
using an adaptive absolute-value-thresholding algorithm. The
algorithm sets two thresholds (one positive and one negative)
that are defined by the user as multiples in the rms value of
the baseline noise. In the event of a positive-threshold crossing,
the algorithm anticipates a negative-threshold crossing within a
user-defined period of time (set to 500 s). If a negative-threshold
crossing occurs in this time window, the time at which the spike
occurred, as well as its data points (or the peak-trough height
and peak-trough width, depending on the mode of operation)
are recorded and marked for transmission over the radio. This
algorithm is discussed in greater detail in [31]. To illustrate
the ability of the filter to accept spikes in the present of un-
wanted noise (such as motion artifacts, which could result in
signals that resemble spikes), the filter parameters were chosen
such that the required signal-trough depth exceeded that of the
sixth spike; hence, the spike was rejected as though it were un-
wanted noise. The signal parameters extracted from the spike
waveform are listed in Fig. 4(d). The amount of data through-
put necessary for transmitting each waveform is also labeled
in Fig. 4. Transmitting the spike parameters only (e.g., spike
time, peak height, and trough depth) requires only 48 bits per
spike, thus, lowering the required bandwidth for transmitting
the 1-s signal to only 288 bits. The normalized correlation of
the received ADPCM-compressed raw spike signal to the auto-
correlated original waveform is over 99%.

B. Pulse Oximetry and Heart Rate

Transmitting the raw heart-rate and pulse-oximetry signals
would require a total data rate of 1.92 kb/s. However, program-

ming the TelosB mote to only transmit the heart rate and pulse
oximetry when heart rate varies by 5 beats/min, or when oxygen
saturation changed by 2%, can significantly lower the required
bandwidth and power consumption depending on the activity
level of the test subject.

C. EKG

A power saving of 75% is realized by applying ADPCM
to EKG signals (output from the signal generator) obtained
at a rate of 200 12-bit samples/s. The normalized correlation
of the received signal with respect to the autocorrelated input
waveform is over 99%.

VI. DISCUSSION

To put the system in perspective, we compare it with: 1) fully
analog and 2) microcontroller-based solutions. The fully ana-
log solutions do not provide onboard digital-signal processing
or compression, and can, thus, be regarded as analog telemetry
systems. However, these analog systems are only a fraction of
the size and consume far less power than the system outlined in
this paper. These analog systems also require custom receivers,
and are not capable of communicating on any standard protocol
(e.g., Health Level 7 [32]–[34], and IEEE [35]. Table I compares
the key performance specifications of the system presented in
this paper against those reported for several fully analog wireless
biological signal-acquisition systems (covered in detail in [31]).
The key parameters of interest are raw data throughput, range,
power dissipation, size, and weight, as the fully analog nature
of the integrated systems inhibits their ability to perform signal
processing, although analog-domain signal processing is being
investigated [30]. Table II compares the system presented in
this paper with several recently reported microcontroller-based



FARSHCHI et al.: BI-FI: AN EMBEDDED SENSOR/SYSTEM ARCHITECTURE FOR REMOTE BIOLOGICAL MONITORING 617

wireless biological monitoring platforms. The system presented
in [1] is an AMD-based 66-MHz PC-class device that communi-
cates through an 802.11b wireless adapter. The system covered
in [36] is a similar TelosB-based system that acquires ECG, yet
does not perform onboard signal processing to lower power dis-
sipation. The system covered in [15] is a PIC-enabled device that
communicates over Bluetooth, which at a data transmission rate
of 300 Hz, does not fully leverage the data throughput capability
of its underlying hardware. The system covered in [17] is an-
other Bluetooth-based system that acquires ECG, yet consumes
power of the order of watts, as does [16], which is a PC-class
device that communicates ECG over Bluetooth. Although all
of the platforms compared in Table II could potentially pro-
vide a level of digital-signal processing capabilities, the com-
putational capabilities of the microcontrollers have been solely
used to implement communications protocols (e.g., Bluetooth,
etc.), rather than biological-signal compression and interpreta-
tion (e.g., spike detection). Table II illustrates that the system
reported in this paper provides similar signal-communications
abilities (i.e., regarding channel count, data multiplexing, and
standards-based communications protocols), while also demon-
strating data compression and signal analysis, at a fraction of
the size, weight, and power dissipation of the other reported
microcontroller-based systems. An EKG monitor based on a
TelosB mote [36], and a wireless pulse oximeter based on
a MICA2 mote have been reported [20]; however, neither of
these systems provide any onboard signal compression or event
detection.

VII. CONCLUSION

In this paper, we have demonstrated an embedded sen-
sor/system architecture for wireless biosignal recording. The
wireless biological sensors leverage the limited signal-filtering
capabilities of the COTS TelosB wireless-enabled processor
modules on which they are based. By applying efficient filters,
which were designed based on existing methods for interpreting
biological signals, the power efficiency of the embedded system
has been improved by a factor of over 400. After taking into
account the standby power dissipation and communications-
protocol overhead, a 360% improvement in battery life can
be expected. Furthermore, onboard signal-processing capabil-
ity has removed the bandwidth bottleneck imposed by the
transceiver, thereby enabling signals to be sampled at double
the rate at which they could be transmitted in raw form. There-
fore, performing local signal processing not only lowers the
power dissipated by the radio, but also enables the observer to
sample data at rates that would be prohibitive if they were to
be transmitted in raw format. We have demonstrated this by
performing spike detection on data sampled at a rate of 8000
12-bit samples/s, which by no means could be supported by the
radio. Two figures of merit have been introduced, i.e., ATEF for
fully analog telemetry systems and DTEF for microcontroller-
based telemetry systems. We calculated the ATEF and DTEF of
our system, and compared it against those of several recently
reported fully analog and microcontroller-based telemetry sys-
tems, respectively. The ATEF of the system presented in this

paper is poor compared to the other fully analog telemetry sys-
tems, because it is significantly heavier and more power inten-
sive. However, the DTEF of the system presented in this paper is
orders-of-magnitude better than the microcontroller-based sys-
tems that have been reported in recent literature. For biomedi-
cal monitoring applications that require data rates of up to 32
kb/s, with the option of event detection, the system presented in
this paper efficiently exploits an appropriate level of hardware
capabilities.
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