Terms Of Use

The reprints on our webpage are provided for non-commercial research and education use, including use for instruction and sharing with colleagues.  Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

2012

DocumentsDate added

Order by : Name | Date | Hits [ Ascendant ]
Over the past two decades, research has identified extrasynaptic GABAA receptor populations that enable neurons to sense the low ambient GABA concentrations present in the extracellular space in order to generate a form of tonic inhibition not previously considered in studies of neuronal excitability. The impor- tance of this tonic inhibition in regulating states of consciousness is highlighted by the fact that extrasynaptic GABAA receptors (GABAARs) are believed to be key targets for anesthetics, sleep-promoting drugs, neurosteroids, and alcohol. The neurosteroid sensitivity of these extrasynaptic GABAARs may explain their importance in stress-, ovarian cycle-, and pregnancy-related mood disorders. Moreover, disruptions in network dynamics associated with schizophrenia, epilepsy, and Parkinson’s disease may well involve alterations in the tonic GABAAR-mediated conductance. Extrasynaptic GABAARs may therefore present a therapeutic target for treatment of these diseases, with the potential to enhance cognition and aid post- stroke functional recovery.
Stress-derived steroid hormones regulate the expression and function of GABAA receptors (GABAARs). Changes in GABAAR subunit expression have been demonstrated under conditions of altered steroid hormone levels, such as stress, as well as following exogenous steroid hormone administration. In addition to the effects of stress-derived steroid hormones on GABAAR subunit expression, stress hormones can also be metabolized to neuroactive derivatives which can alter the function of GABAARs. Neurosteroids allosterically modulate GABAARs at concentrations comparable to those during stress. In addition to the actions of stress-derived steroid hormones on GABAARs, GABAARs reciprocally regulate the production of stress hormones. The stress response is mediated by the hypothalamic-pituitary-adrenal (HPA) axis, the activity of which is governed by corticotropin releasing hormone (CRH) neurons. The activity of CRH neurons is largely controlled by robust GABAergic inhibition. Recently, it has been demonstrated that CRH neurons are regulated by neurosteroid-sensitive, GABAAR δ subunit-containing receptors representing a novel feedback mechanism onto the HPA axis. Further, it has been demonstrated that neurosteroidogenesis and neurosteroid actions on GABAAR δ subunit-containing receptors on CRH neurons are necessary to mount the physiological response to stress. Here we review the literature describing the effects of steroid hormones on GABAARs as well as the importance of GABAARs in regulating the production of steroid hormones. This review incorporates what we currently know about changes in GABAARs following stress and the role in HPA axis regulation.