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Behr, Joachim, Uwe Heinemann, and Istvan ModyKindling in- delay the induction of kindling (Bowyer 1982; Cain et al.
duces t_ransie_nt NMDA receptor—-mediated faqilitation of high-fret988: Croucher et al. 1988; Dennison and Cain 1989;
quency input in the rat dentate gyrusNeurophysioB5: 2195-2202, Holmes et al. 1990: McNamara 1989: Peterson et al. 1983,

2001. To elucidate the gating mechanism of the epileptic dentat; . . LT
gyrus on seizure-like input, we investigated dentate gyrus field &)-584' Sato et al. 1988), glutamatergic neurotransmission is

tentials and granule cell excitatory postsynaptic potentials (EPSEEtically involved in the generation of kindling epilepsy.
following high-frequency stimulation (10—100 Hz) of the lateral perthdeed, alterations in excitatory synaptic transmission were
forant path in an experimental model of temporal lobe epilepsy (i.@lescribed in human (Isokawa andvesque 1991; Represa
kindled rats). Although control slices showed steady EPSP depressignal. 1989) and in experimental animal models of epilepsy
at frequencies greater than 20 Hz, slices taken from animals 4ichamara 1995; Mody 1998).

after the last seizure presented pronounced EPSP facilitation at 50 ntfrhe entorhinal cortex provides the main input to the
100 Hz, followed by steady depression. However, 28 days after Witter 1993 d to be i ved i
kindling, the EPSP facilitation was no longer detectable. Using t ppocampus (Witter ) and seems to be involved in

specificN-methylo-aspartate (NMDA) and R&-amino-3-hydroxy- t€mporal lobe epilepsy (Collins et al. 1983; Dasheiff and
5-methyl-4-isoxazoleproponic acid (AMPA) receptor antagonistdcNamara 1982; Rutecki et al. 1989; Spencer and Spencer
2-amino-5-phosphonovaleric acid and SYM 2206, we examined th®94). It has been suggested that the dentate gyrus functions
time course of alterations in glutamate receptor-dependent synapfi¢ a filter that prevents the spread of seizure activity to the
currents that parallel transient EPSP facilitation. Forty-eight ho‘gfppocampus (Alger and Teyler 1976; Heinemann et al.

after kindling, the fractional AMPA and NMDA receptor-mediate 992: Lothman et al. 1992; McNaughton et al. 1981). This
excitatory postsynaptic current (EPSC) components shifted dramati-

cally in favor of the NMDA receptor—mediated response. Four weefting mechanism breaks down after chronic epilepsy is
after kindling, however, AMPA and NMDA receptor-mediatednduced by kindling that facilitates the propagation of epi-
EPSCs reverted to control-like values. Although the granule celeptiform activity (Behr et al. 1996, 1998). Single cellular
of the dentate gyrus contain mRNA-encoding kainate receptoesnd neuronal network alterations both may be responsible
neither single nor repetitive perforant path stimuli evoked kainatgy |oss of filter function (Ribak et al. 1992; Schwartzkroin

receptor-mediated EPSCs in control or in kindled rats. The ep At the network level m fiber sproutin r

hanced excitability of the kindled dentate gyrus 48 h after the | ??Sgijlt tirtl I?)n e-tterom Steru?:t,ura?zsl'gler;ieonssptr?;: mgaap;gsm_s
seizure, as well as the breakdown of its gating function, appear 9 . y .
result from transiently enhanced NMDA receptor activation thd@te dentate gyrus throughput (Cronin and Dudek 1988;

provides significantly slower EPSC kinetics than those observedtidek and Spitz 1997; Golarai and Sutula 1996; McNamara
control slices and in slices from kindled animals with a 28-da$994; Patrylo and Dudek 1998; Wuarin and Dudek 1996).
seizure-free interval. Therefore, NMDA receptors seem to playRrevious studies described changes in the glutamatergic
_critical_ role in thg acute throughput _of seizure_activity and in th§ystem at the cellular level that led to an increase in excit-
induction of the kindled state but notin the persistence of enhancgffjjiry that facilitated synaptic transfer from the entorhinal
seizure susceptibility. cortex to the hippocampus (Ko and Mody 1994; Kbr et
al. 1993; McNamara 1994, 1995; Mody and Heinemann
INTRODUCTION 1987; Mody and Lieberman 1998; Mody et al. 1988). How-
o ) ] ) o _ever, the long-term contribution of this increase in excit-
Repetitive high-frequency stimulation (kindling) of Vari-ghility to the breakdown of the dentate gyrus gating mech-
ous brain regions results in the progressive developmentQ{icm is unclear. In this study we investigate acute and

seizure activity (Goddard et al. 1969; Racine 1972) Where%rsistent alterations of glutamate receptor-mediated exci-

initially sub-convulsive stimulation leads to the gradu atory postsynaptic potentials (EPSPs) and currents (EPSCs)
development of generalized seizures. This permanently ?rri'the dentate gyrus and their role in the integration of

hanced excitability is thought to result from changes bothﬁ h-f out f th torhinal '
the cellular and at the network level (McNamara 199 igh-frequency input from the entorhinal cortex.

1995; Mody 1993). Because botN-methylo-aspartate
(NMDA) and non-NMDA glutamate receptor antagonists The costs of publication of this article were defrayed in part by the payment

of page charges. The article must therefore be hereby markaxekettisemerit
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METHODS ing student’'st-test (Origin 4.1, Microcal); data are expressed as
- means* SE. Significance level was set B<< 0.05.
Kindling

Experiments were performed in 31 control hippocampal horizontBrugs

slices, obtained from seven age-matched unimplanted controls and six . .. .
sham-implanted controls, and 42 kindled hippocampal slices taken! "€ following drugs were bath applied: 2-amino-5-phosphonova-

en _ _ ; . ;
from 15 fully kindled 450—600 g adult Wistar rats. Animals werﬁe“C acid (APV) (Research Biochemicals, Natick, MA), 6-nitro-7-
stimulated unti=15 consecutive stage 5 seizures were obtained. In §{/Phamoylbenzo(f)quinoxaline-2,3-dione (a gift from Novo Nordisk,
attempt to differentiate acute and enduring changes of synaptic trap§nmark), SYM 2206 (Tocris, Bristol, UK), and picrotoxin (Fluka
mission after kindling, kindled rats were used 4&h< 8) or 28 days BloChemika, Ronkonkoma, NY).
(n = 7) after the last stimulus induced a stage 5 seizure. Bipolar
stainless steel electrodes were implanted under Na-pentobarbital@e-suLTs
esthesia (75 mg/kg i.p.) into the left amygdala (relative to bregma in
mm: —2.5 posterior; 5 lateral, 8.5 below cortex) (Paxinos and Watson Using extracellular field potential recordings, we investi-
1986). After a postsurgical recovery period of 7—-8 days, animals wegated the network behavior of the epileptic dentate gyrus
stimulated daily through the implanted electrode with a train dbllowing high-frequency stimulation (10 pulses at 100 Hz) of
biphasic 150uA pulses at 60 Hz for 1 s. Behavioral changes duringhe lateral perforant path. In control slices, repetitive stimula-
kindling were scored according to the scale of Racine (1972).  jon of perforant path fibers resulted in steady fEPSP depres-
sion (W = 6) (Fig. 1A). In contrast, 48 h after kindling, kindled
Slice preparation and solutions slices 6 = 6) showed a pronounced facilitation of the second,
o ) ) and occasionally of the third pulse, which was also followed by
At the indicated times after thg last seizure, the rats were decam:psp depressiom(= 6). Interestingly, 28 days after the last
fggd‘lggd%_?ﬁﬁﬁ 252?5iﬂ‘fféhiﬂagﬁgﬁ'@?tf'gscﬁe dqe”r:c\%rf;?g‘é@zure, the discharge pattern reverted to control conditions
i prep P egrp1 = 8). These slices showed a steady depression of fEPSPs

(Campden, Loughborough, UK). The slices were transferred to e S
interface recording chamber that was continuously perfused wiijd lacked the strong facilitation that was observed in kindled

aerated (95% ©5% CQ,), prewarmed (34°C) artificial cerebrospinaiSlices 48 h after the last seizure. Analysis of the frequency
fluid (ACSF) containing (in mM) 124 NaCl, 1.25 BRO, 26 dependence of the paired pulse ratios (pulse 10 relative to pulse
NaHCQ,, 3 KCI, 1.6 CaC}, 1.8 MgSQ, and 10 glucose, pH 7.4. For 1) for each individual animal group revealed significant fEPSP
all experiments on EPSCs, the Ca@hd MgC|, concentrations were depression at frequencies greater than 20 Hz in all experimen-

increased to 4 mM and 5@M picrotoxin was present. tal groups (Fig. B). It is noteworthy that application of the
GABA, and GABAg receptor antagonists bicuculline (M)
Recording and data acquisition and CGP 55845A (2LM) to control SliceSI(] = 3) did not

prevent steady depression of fEPSPs; it is therefore unlikely

Field potentials (fEPSPs), EPSPs, and EPSCs were evoked usiigt GABAergic mechanisms were involved (data not shown).

100-us pulses every 10 s. These pulses were delivered through bipolarrg  determine the frequency necessary to induce fEPSP
electrodes that were placed in the outer third of the molecular Iayerfg ilitation in animals dissected 48 h after kindling, we con-
the upper blade of the dentate gyrus to preferentially stimulate late cted paired pulse protocols at 10, 20, 50, and 100’ Hz (Fig. 2

perforant path fibers. Stimulus intensity was adjusted to 50—70% : .
maximum response. Selective recordings of EPSPs and EPSC4 4d B)- Although control slices and slices 28 days after

lateral perforant path synapses were verified by determining the efféfdling showed a paired pulse depression at 50 and 100 Hz,
of paired-pulse stimulation on EPSPs (Macek et al. 1996; McNaug#ices from animals 48 h after the last seizure presented strong
ton 1980). Recordings exhibiting paired pulse depression at an inteaired pulse facilitation. At 100 Hz, the paired pulse ratio
stimulus interval of 100 ms were rejected. Field potentials wefpulse 2 relative to pulse 1) significantly increased from Q75
recorded with ACSF-filled microelectrodes. For voltage-clamp r€}.04 (1 = 6) in controls to 3.45- 0.88 (1 = 6) in kindled slices
cordings with sharp microelectrodes (40-50)Mesistance) filled repared 48 h after the last seizure. The value dropped, how-

Instruments, Tamm, Germany) in discontinuous single electrode v%-

age-clamp mode was employed to eliminate access resistance ?é%dling. Application of the NMDA receptor antagonist APV
facts. Neurons were voltage-clamped-a60 mV for recordings of “M.) completely bIOCI'(ed.palred pulse faC|I|tat!0n in k!n-
evoked EPSCs. Recorded fEPSPs, EPSPs, and EPSCs were filtergéle S"°¢5 (48 h after kindling), which resulted_ m. .a paired
3 kHz, sampled at 10 kHz, and collected using a TIDA interfadaU/se ratio of 0.82+ 0.12 f = 4) that was not significantly
(HEKA, Lambrecht/Pfalz, Germany). Peak amplitudes of fEPSPs afifferent from control slices recorded in the presence of APV
EPSCs were measured from the averages of 8—10 sweeps. Populdf80 = 0.02,n = 3) (Fig. ).

spikes were calculated as the mean amplitude of the negative and 0 elucidate the mechanism underlying fEPSP facilitation,
positive phases. Paired pulse facilitation and depression were gknultaneous field potential and intracellular current clamp
pressed as the ratio of the peak amplitude of the second fEPSP torié¢ordings were performed during paired pulse stimulation in
peak amplitude of the first fEPSP. In recordings where the first fEEP$Bntrol slices it = 3 cells) and in kindled slices 48 h after the

was followed by a field response contaminated by a population spi st seizure if = 3 cells). Although cells in control slices
the mean of the negative and positive phases was added to%
i

underlying fEPSP. This procedure underestimates the underlyip %WEd a palllred plél_se deprlTSS'OE. Sé:nlcljarl_to that C.)btﬁ"ned by
fEPSP and produces a paired pulse facilitation that is smaller than '('Jg1J potentia recordings, celis In kindled slices typically pre-
equal to the real ratio. To more accurately quantify these differencé§Nt€d an action potential on the second stimulus (at 50 and
we turned to intracellular and voltage clamp recordings in the pres00 Hz) that contributed to the facilitated population spike in
ence of a sodium channel blocker. EPSC charges were calculatediBjd potential recordings (Fig./3). Superimposing the rep-
integrating the traces. Statistical evaluation was performed by apphgsentative normalized traces of both experimental groups re-
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A 1.3ms,n=5,P = 0.007) (Fig. B) and in kindled slices taken
control (100 Hz) from animals 28 days after kindling (102 1.2 ms,n = 9,
P = 0.016) (data not shown).

To quantify acute and long-lasting changes in the contribu-
tions of NMDA, RS«-amino-3-hydroxy-5-methyl-4-isox-
azoleproponic acid (AMPA), and kainate (KA) receptor-me-

diated EPSCs to the control response, we successively applied
48h after the NMDA receptor antagonists APV (M) and the potent
kindling AMPA Treceptor antagonist SYM 2206 (100M) (Li et al.

1999; Rodriguez-Moreno et al. 2000) to the different experi-

mental groups (Fig. 4). In control slices, application of APV
and SYM 2206 blocked single stimulus—evoked non-NMDA

X receptor—-mediated responses, which indicated that postsynap-
tic KA receptor activation was lackingi(= 4). Because KA
28d after EPSCs facilitate during high-frequency stimulation of mossy
kindling fibers in CA3 neurons (Castillo et al. 1997; Vignes and Col-

lingridge 1997), we applied trains of stimuli between 50 and
500 Hz to perforant path fibers to test whether KA receptor—
5mVv mediated EPSCs of dentate gyrus cells behave in a similar
20 ms fashion. However, in contrast to CA3 pyramidal cells, repeti-
tive stimulation of granule cells did not result in the facilitation
B of KA receptor—-mediated EPSCsa & 4). The same results
were obtained in kindled preparations. We could not record
1.0 1 oo o SYM 2206 —resistant kainate receptor—-mediated currents either
28d after kindling 48 h (= 3) or 28 daysif = 3) after kindling (data not shown).
Therefore, both in control and in epileptic rat dentate gyri, the
non-NMDA receptor-mediated responses seem to be caused
solely by AMPA receptor activation.

By normalizing the charge and the amplitude of control
responses consisting of NMDA and AMPA receptor—mediated
components, we calculated the fraction of APV-insensitive
inward currents in control and in kindled preparations (Fig.

100 4B). In kindled rats 48 h after the last stimulation, the fraction
stimulation frequency (Hz) both of the amplitude (0.46: 0.06,n = 9, P < 0.05) and of

Fic. 1. Extracellular field potential recordings in the dentate gyri of contrdhe charge (0.3% 0.06,n = 8, P < 0.05) of APV-resistant,
and kindled rats during high-frequency stimulation (10-100 Hz) of the peAMPA receptor—-mediated EPSCs was significantly decreased

forant path.A: in control slices, repetitive stimulation of perforant path ﬁber%ompared with the control group (0.79 0.04,n = 17, and
at 100 Hz resulted in steady field potential (fEPSP) depression. In contrE‘t ‘ '

0.8 -

0.6 -

0.4 4

0.2 4

paired pulse ratio p10/p1

0.0

48 h after kindling, kindled slices showed pronounced facilitation of the seco d69 - 0'03.’n - .11’ .reSpeCtIV(.aly)' However, f(.)ur weeks after
(arrow) and occasionally of the third pulse, which was followed by fEPsPI€ last seizure in kindled animals, the amplitude and charge
depression. Twenty-eight days after the last seizure, the discharge patféactions of AMPA receptor—-mediated EPSCs were control-
reverted to control conditio_nB: frequency dependencg of averaged pair_eﬂke (0_72 + 0.06,n = 10, and 0.80+ 0.04,n = 5, respec-
pulse ratios (pulse 10 relative to pulse 1) for each animal group (solid "rg/ely). In control slices and in kindled slices 28 days after the
control; dotted line, 48 h after kindling; dashed line, 28 days after kindling), . . . . S
We recorded significant fEPSP depression at frequencies higher than 20 H R seizure, inclusion ,Of APV (6p.M) did not significantly
all groups. change EPSC decay time (9:81.9 and 9.8+ 0.7 ms), most
likely because, in the presence of 4 mM #gat —60 mV
vealed different time courses of EPSP decay phases (Rl). 3 holding potential, most of the NMDA receptors are already
Due to the slow EPSP kinetics in kindled preparations, theocked under control conditions. However, in kindled slices
second stimulus generally evoked an action potential in tA8 h after the last seizure, the prominent APV-induced de-
decay phase of the EPSP at a relatively depolarized membrarease in amplitude was paralleled by a significant decrease in
potential. decay time (11.6= 1.0 ms,P = 0.001). This finding agrees
To examine this observation in more detail, we conductedth the altered M§" blockage reported in the kindled dentate
voltage clamp recordings of dentate gyrus cell EPSCs in caygyrus (Kdhr et al. 1993).
trol (n = 11) and in fully kindled rats 48 m(= 6) and 28 days By subtracting the APV-resistant EPSC amplitudes and
(n = 6) after the last seizure. GABAreceptor—mediated charges from their normalized control values, we calculated the
inhibitory postsynaptic currents (IPSCs) were blocked by pigalues for the NMDA receptor—-mediated component. The frac-
rotoxin (50 uM); GABAg receptor—-mediated IPSCs werdion of NMDA receptor—-mediated EPSCs shows a dramatic
eliminated by the use of QX-314 containing intracellular sancrease in its amplitude, from 0.24.0.04 fr = 17) to 0.54=+
lution. Extracellular MG*" and C&" concentrations were in 0.06 (| = 9) (P < 0.05), as well as in its charge, from 0.30
creased by 2 mM to prevent spontaneous firing. In kindl&03 (= 11) to 0.61+ 0.06 (1 = 8) (P < 0.05), 48 h after the
slices (48 h after kindling), the decay time was significantliast seizure. However, four weeks after the last seizure, the
longer (14.7+ 1.2 ms,n = 11) than it was in controls (8.4 amplitude and charge fractions of the isolated NMDA compo-
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A 20 Hz 50 Hz 100 Hz
control _(L_{L‘ NL— _{\{L_

FIG. 2. Frequency dependence of field
48h after excitatory postsynaptic potential (EPSP) fa-
kindling cilitation in control and in kindled ratsA:

~ AN paired pulse stimulation at 20, 50, and 100
Hz in control and in kindled rats (48 h and
28 days after kindling). Although control
(60 pM APV) slices and slices 28 days after kindling
showed paired pulse depression at 50 and
100 Hz, slices from animals 48 h after the
last seizure presented significant paired
pulse facilitation (arrows). TheN-methyl-
28d after p-aspartate (NMDA) receptor antagonist 2-
kindling | 5 mV amino-5-phosphonovaleric acid (APV) (60
M) completely blocked EPSP facilitation
20 ms in kindled slices, resulting in a paired pulse
ratio not significantly different from control
B C slices C). B: frequency dependence of the
5. 6. averaged paired pulse ratios (pulse 2 relative
b 5 to pulse 1) for each animal group (solid line,
] S 54 48h after control; dotted line, 48 h after kindling;
g' g' kindling dashed line, 28 days after kindling). Only in
£ ;) Bhafterkindling _ s 4 kindled animals, 48 h after the last seizure,
p \ ....... < 2l did we record a significant paired pulse fa-
&, I ------ % cilitation at 50 and at 100 Hz.
= T et
e control o 24
o —— & ? 1] *
g 0 26d after kindling = = 8 0
10 100
stimulation frequency (Hz) control APV

nent (0.28+ 0.07,n = 10, and 0.20+ 0.04,n = 5, respec- (Schweitzer et al. 1992). Accordingly, sustained stimulation at

tively) returned to control values. 10-100 Hz partially models the synaptic input to the dentate
gyrus that occurs during the initial tonic and subsequent clonic
DISCUSSION phases of dentate gyrus seizure activity. Facilitation of fEPSPs

nly occurred within the initial 50 ms of a train of evoked

fibers, we demonstrated a transient facilitation of field arlSPONS€S and was _succ_:eeded by_ steady depression. Because
single-cell EPSPs in the kindled dentate gyri recorded 4gtie tonic ph.ase of epileptiform activity generally lasts for a few
after the last seizure. In contrast, the discharge patternsSfFOnds with a frequency of more than 10 Hz, our results
control and in kindled animals dissected 28 days after the 18§99est that facilitation of tonic epileptiform discharges is
seizure failed to show any facilitation and were characteriz&@Pidly followed by efficient depression. Therefore, kindling
by a steady depression. The facilitation in acutely kindldgduces a short-lasting throughput of high-frequency input that
preparations most likely results from transiently enhancé@ay propagate to the hippocampus. This facilitation of high-
NMDA receptor-mediated current that provides a significantfyequency input in kindled animals is consistent with the en-
slower EPSC kinetic than do control slices and kindled slicésnced excitability of the kindled dentate gyrus, which may no
from animals with a 28-day seizure-free interval. longer function as a filter that prevents the spread of epilepti-
The dentate gyrus plays a crucial role in the propagation fafrm activity from the entorhinal cortex to the hippocampus
seizures from the entorhinal cortex to the hippocampus. In tfiehr et al. 1998; Heinemann et al. 1992; Lothman et al. 1992).
entorhinal cortices of KA-treated rats and human epileptBecause bath application of GABAand GABAg antagonists
brains, high-frequency oscillations (100—500 Hz) may contrilzould not prevent the depressive effect, activation of GABAer-
ute to the excitatory synaptic input to dentate granule celigc inhibition does not seem to be critically involved in this
(Bragin et al. 1999a,b). Seizure-like events in the dentate gptienomenon. Postsynaptic receptor desensitization could be
of KA-treated epileptic rats are characterized by synchronized/olved in frequency-dependent depression under some con-
field EPSPs that underscore the clustering of action-potentiiions (Larkman et al. 1997; Takahashi et al. 1995). However,
firing and that shift in their bursting patterns from fast antbecause the enhanced transmitter release caused by sustainec
regular discharges (tonic phase) to slower and clustered diimulation results in depletion of presynaptic glutamate vesi-
charges (clonic phase) with frequencies from 1 to 100 Hzes, a presynaptic mechanism most likely accounts for the
(Wuarin and Dudek 1996). Also, in in-vitro models of epiobserved effect (Galarreta and Hestrin 1998; Liu and Tsien
lepsy, stimulus-evoked and spontaneous synchronous popd@95; Ryan and Smith 1995; Silver et al. 1998; Zucker 1989).
tion spikes with frequencies of up to 300 Hz were observed The present study demonstrates a pronounced increase in the

Using high-frequency stimulation of lateral perforant patﬂ
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control ‘NL ‘NL

48h after kindling

10 Hz 20 Hz 50 Hz 100 Hz 20 mV
50 ms
Ab B
control
\ normalized, - ——\—--

superimposed

%X 20ms
48h after kindling

100 Hz 10 ms

Fic. 3. Simultaneous field and single-cell EPSP recordings during paired pulse stimulation in control and in kindlefalices.
single-cell recordings in control slices showed paired pulse depression similar to that obtained by field potential recordings. Kindled
slices (48 h after kindling) presented an action potential (truncated) on the second stimulus at 50 and abb@@rdzracepthat
was underscored by the facilitated population spikes in field potential recordimggréce$. Ab: superimposing normalized
representative traces of both experimental groups at 100 Hz revealed different time courses of EPSP decay phases on the first
stimulus (arrow). Note that, due to the slow EPSP kinetic in kindled preparations, the second stimulus generally evoked an action
potential (truncated) in the decay phase of the EPSP at a relatively depolarized membrane p8tentamalized and
superimposed voltage clamp recordings of dentate gyrus cell EPSCs in control rats and in kindled rats 48 h after the last seizure
in the presence of the GABAreceptor antagonist picrotoxin (50M) and QX-314 containing intracellular solution to eliminate
GABAg receptor—mediated inhibitory postsynaptic currents. In kindled slices, the decay time was significantly longer than it was
in controls (normalized and superimposed).

fraction of NMDA receptor—-mediated EPSC (both in chargiéon of NMDA receptors that results in the decrease of a
and in amplitude) 48 h after the last seizure of kindled rassicceeding stimulus-evoked NMDA receptor—mediated EPSC
whereas the fraction of the AMPA receptor—-mediated EPSTong et al. 1995). Decreased calcineurin-mediated negative
component decreased significantly. However, this scenafe@dback on NMDA channels in the dentate gyri of patients
changed 28 days after the last kindled seizure when the initiadlyffering from temporal lobe epilepsy and in those of kindled
increased AMPA and NMDA components reverted to controfats (Lieberman and Mody 2000; Mody and Lieberman 1998)
like values. Surprisingly, neither in control nor in kindlednay lead to the observed potentiaton of the second NMDA
animals were postsynaptic KA receptor—-mediated EPSCs reeeptor—-mediated component. Therefore, we have to consider
corded. APV-sensitive EPSP facilitation appears to result frotimat seizure-induced alterations of the phosphorylation state of
transiently increased NMDA receptor—-mediated current. OMMDA receptors caused by decreased calcineurin levels may
results demonstrate, in kindled rats dissected 48 h after the lestise changes in NMDA receptor function that may in turn
seizure, that EPSC decay time outlasts the time between tas@cerbate hyperexcitability. Even though NMDA channel
succeeding stimuli applied at frequencies greater than 20 kpenings are still prolonged when recorded 28 or 60 days after
Accordingly, NMDA receptor channels are not completelthe last kindling stimulus (Mody and Lieberman 1998), ini-
blocked when the second pulse is given. Considering tlially enhanced NMDA receptor-mediated EPSCs declined to
altered Mg@" blockage reported in the kindled dentate gyrusontrol levels after a period of 28 seizure-free days (Sayin et al.
(Kohr et al. 1993), NMDA receptor—-mediated facilitation is1999). It is therefore possible that synaptic and extrasynaptic
feasible. The kindling-induced enhancement of NMDA recefdNMDA receptors are differentially regulated. The dentate gy-
tor-mediated synaptic responses in dentate gyrus cells has besnseems to defend itself against long-term hyperexcitability
extensively studied (McNamara 1994, 1995; Mody and Heinduring kindling, e.g., by lowering the initially increased density
mann 1987; Mody et al. 1988). Kindled granule cells exhibdf postsynaptic NMDA receptors. Indeed, Kamphuis et al.
voltage-dependent EPSPs that are increased by depolarizafi®®5) found a significant increase of NR2B mRNA in the
and low M¢* concentration and are reduced by APV; thisourse of kindling and in fully kindled rats 24 h after their last
reflects a contribution of NMDA receptors to synaptic transeizure but, by 28 days after the last stimulation, the expression
mission in the kindled dentate gyrus (Mody et al. 1988). At thef NR2B had declined to control levels.

single-channel level, this enhanced NMDA function consists of Few studies have addressed epilepsy-induced alterations of
prolonged openings of NMDA channels and an elevated phassn-NMDA receptor—mediated neurotransmission in the den-
phorylation state of the channel (Koet al. 1993). Activation tate gyrus. Despite studies showing lasting increases of gluta-
of the phosphatase calcineurin is known to cause desensitizeate receptors mRNAs in the dentate gyri of patients suffering
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FiG. 4. Inward currents in control and in kindled dentate gyrus cAllseft voltage clamp recordings of inward currents in the
presence of the NMDA receptor antagonist APV (8@) and the kainate receptor antagonist SYM 2206 (80 in dentate gyrus
cells following perforant path stimulation. High-frequency stimulation at 100 Hz failed to elicit kainate receptor-mediated EPSCs.
Right peak amplitude of stimulus-evoked EPSCs in the course of successive application of APV and SYM 2206 in the same cell.
B, left fraction of APV-resistant EPSCs compared with glutamatergic neurotransmission in control and in kindled preparations (48
h and 28 days after the last seizure). To analyze the peak amplitudes of the APV-resistant EPSCs independently of the stimulation
intensity, the amplitudes of the control responses were normalized in each group. Each panel shows the isolated APV-resistant
non-NMDA receptor-mediated EPSC superimposed on the corresponding control reghghséehe fractions of charges of the
NMDA and AMPA receptor—-mediated EPSCs compared with the glutamatergic control responses in control and in kindled
preparations (48 h and 28 days after the last seizure). Note the significant alteration in the percentage of contribution of the
glutamatergic components in kindled rats 48 h after their last seizure. All glutamate receptor-mediated components returned to
control values 28 days after the last seizure.

temporal lobe epilepsy (TLE) (Babb et al. 1996) as well as tation. This scenario appears to be unlikely, however, because
two different animal models of TLE (Babb et al. 1996; Kamblockage of fast and slow inhibition in control rats was not
phuis et al. 1994; Pollard et al. 1993), the present study fouafficient in modeling the strong facilitation that was observed
no long-term increase of AMPA receptor-mediated EPSda.kindled preparations. In addition, previous studies report a
This result, however, does not preclude somatic up-regulatimather increased function of the GABAergic system after kin-
of AMPA receptors. dling (Buhl et al. 1996; Nusser et al. 1998) that may stem from
In contrast to AMPA and NMDA receptors, the contributionincreased excitatory input onto GABAergic neurons, from in-
of KA receptors to epileptogenesis has not been extensivelgased quantal size of inhibitory postsynaptic currents, and
investigated. Despite the potent epileptogenicity of KA admirirom reduced presynaptic autoinhibition of GABA release.
istration (Ben-Ari 1985; Sperk 1994), we found no postsynap- In addition to cellular alterations, there is some support for
tic kainate receptor—mediated EPSCs either in control (Lerrttee hypothesis that feedback excitation by seizure-induced
et al. 1997) or in kindled animals. These results are at oda®ssy fiber sprouting may lead to enhanced excitability and
with the possible involvement of dentate gyrus kainate recemay facilitate dentate gyrus throughput (Cronin and Dudek
tors in kindling epilepsy and are somewhat surprising becauk®88; Dudek and Spitz 1997; Golarai and Sutula 1996; Mc-
the dentate gyrus contains mRNA-encoding KA receptoidamara 1994; Patrylo and Dudek 1998; Wuarin and Dudek
(Kamphuis et al. 1995; Wisden and Seeburg 1993) that app&866). However, an inhibitory rather than an excitatory func-
to be promising candidates for the mechanisms underlying ttien of the reorganized dentate gyrus also has been proposed
development and persistence of the kindled state. This resulffbak and Peterson 1991; Sloviter 1992). Alternatively,
like that obtained in area CAl, where pyramidal neurorsprouting may not be a prerequisite of epilepsy because block-
express KA receptor subunits, but, as in the present studyagfe of mossy fiber sprouting in two different models of TLE
has been impossible to unmask synaptic currents mediateddiy not necessarily prevent the development of limbic seizures
KA receptors at the synapse established by Schaffer collater@glengo and Mello 1997, 1998).
and pyramidal cells (Castillo et al. 1997; Frerking et al. 1998; In summary, the enhanced excitability of the kindled dentate
Lerma et al. 1997). However, we cannot rule out either tlgyrus 48 h after the last seizure, as well as the breakdown of its
presence of or the plastic changes of kainate receptors at offj@ing mechanism during high-frequency input, most likely is
synapses, e.g., at granule cell to interneuron synapses, atdéiesed by increased NMDA receptor activation. Considering
inhibitory terminals of interneurons, or at mossy cell to granut&e transient nature of enhanced NMDA receptor activation,
cell synapses. the critical role of this receptor seems to lie in the induction of
A decrease in inhibition may also account for EPSP facilstructural and functional alterations induced by seizures (Can-
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tallops and Routtenberg 1996; McNamara and Routtenb DARD GV, McINTYRE DC, AND LEECH CK. A permanent change in brain
1995: Sprengel et al. 1998 Sutula et al. 1996) rather than in th nction resulting from daily electical stimulatioBxp Neurol25: 295-330,

. . 1969.
persistence of the kindled state. GoLARAI G AND SuTuLA TP. Functional alterations in the dentate gyrus after

induction of long-term potentiation, kindling, and mossy fiber sprouting.
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